{"title":"采用大涡模拟的长圆形和非圆形圆柱体气动噪声","authors":"J. Jacob, Subrata Bhattacharya","doi":"10.1177/1475472X221093713","DOIUrl":null,"url":null,"abstract":"Flow-induced aerodynamic noise from four cylindrical shapes of infinite length at a low subcritical flow regime is studied using Large Eddy Simulation (LES) and acoustic analogy. Numerical simulations are performed for short-span (length to diameter ratio of 3) cylinders, and a sound correction method based on equivalent/spatial coherence length has been applied to estimate noise from long-span cylinders. An attempt is made to compare spatial coherence lengths of four cross-sections at the same Reynolds number (Re). The sound correction method that is well established for circular cylinders proved effective for non-circular cross-sections also. Owing to the limitation in computational capacity, a well-resolved LES is still unachievable for higher Re flows and long-span cylinders without adopting a sound correction methodology. A grid resolution based on the characteristic length and velocity scale was adopted in simulation and proved effective for computing aerodynamic and aeroacoustic characteristics. An ‘effective frequency band’ of sound pressure level-frequency curve is proposed that predicts over 99.5% of the overall sound pressure level, and features of this band for four cross-sections are presented.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"21 1","pages":"142 - 167"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Aerodynamic noise from long circular and non-circular cylinders using large eddy simulations\",\"authors\":\"J. Jacob, Subrata Bhattacharya\",\"doi\":\"10.1177/1475472X221093713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flow-induced aerodynamic noise from four cylindrical shapes of infinite length at a low subcritical flow regime is studied using Large Eddy Simulation (LES) and acoustic analogy. Numerical simulations are performed for short-span (length to diameter ratio of 3) cylinders, and a sound correction method based on equivalent/spatial coherence length has been applied to estimate noise from long-span cylinders. An attempt is made to compare spatial coherence lengths of four cross-sections at the same Reynolds number (Re). The sound correction method that is well established for circular cylinders proved effective for non-circular cross-sections also. Owing to the limitation in computational capacity, a well-resolved LES is still unachievable for higher Re flows and long-span cylinders without adopting a sound correction methodology. A grid resolution based on the characteristic length and velocity scale was adopted in simulation and proved effective for computing aerodynamic and aeroacoustic characteristics. An ‘effective frequency band’ of sound pressure level-frequency curve is proposed that predicts over 99.5% of the overall sound pressure level, and features of this band for four cross-sections are presented.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":\"21 1\",\"pages\":\"142 - 167\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472X221093713\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X221093713","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Aerodynamic noise from long circular and non-circular cylinders using large eddy simulations
Flow-induced aerodynamic noise from four cylindrical shapes of infinite length at a low subcritical flow regime is studied using Large Eddy Simulation (LES) and acoustic analogy. Numerical simulations are performed for short-span (length to diameter ratio of 3) cylinders, and a sound correction method based on equivalent/spatial coherence length has been applied to estimate noise from long-span cylinders. An attempt is made to compare spatial coherence lengths of four cross-sections at the same Reynolds number (Re). The sound correction method that is well established for circular cylinders proved effective for non-circular cross-sections also. Owing to the limitation in computational capacity, a well-resolved LES is still unachievable for higher Re flows and long-span cylinders without adopting a sound correction methodology. A grid resolution based on the characteristic length and velocity scale was adopted in simulation and proved effective for computing aerodynamic and aeroacoustic characteristics. An ‘effective frequency band’ of sound pressure level-frequency curve is proposed that predicts over 99.5% of the overall sound pressure level, and features of this band for four cross-sections are presented.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.