钙钛矿光伏电池横向分光系统

IF 1.5 4区 工程技术 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Photonics for Energy Pub Date : 2022-04-01 DOI:10.1117/1.JPE.12.022206
Benjamin D. Chrysler, S. Shaheen, R. Kostuk
{"title":"钙钛矿光伏电池横向分光系统","authors":"Benjamin D. Chrysler, S. Shaheen, R. Kostuk","doi":"10.1117/1.JPE.12.022206","DOIUrl":null,"url":null,"abstract":"Abstract. We examine the potential of a multijunction spectrum-splitting photovoltaic (PV) solar energy system with perovskite PV cells. Spectrum splitting allows combinations of different energy band gap PV cells that are laterally separated and avoids the complications of fabricating tandem stack architectures. Volume holographic optical elements have been shown to be effective for the spectrum-splitting operation and can be incorporated into compact module packages. However, one of the remaining issues for spectrum splitting systems is the availability of low-cost wide band gap and intermediate band gap cells that are required for realizing high overall conversion efficiency. Perovskite PV cells have been fabricated with a wide range of band gap energies that potentially satisfy the requirements for multijunction spectrum-splitting systems. A spectrum-splitting system is evaluated for a combination of perovskite PV cells with energy band gaps of 2.30, 1.63, and 1.25 eV and with conversion efficiencies of 10.4%, 21.6%, and 20.4%, respectively, which have been demonstrated experimentally in the literature. First, the design of a cascaded volume holographic lens for spectral separation in three spectral bands is presented. Second, a rigorous coupled wave model is developed for computing the diffraction efficiency of a cascaded hologram. The model accounts for cross-coupling between higher diffraction orders in the upper and lower holograms, which previous models have not accounted for but is included here with the experimental verification. Lastly, the optical losses in the system are analyzed and the hypothetical power conversion efficiency is calculated to be 26.7%.","PeriodicalId":16781,"journal":{"name":"Journal of Photonics for Energy","volume":"12 1","pages":"022206 - 022206"},"PeriodicalIF":1.5000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Lateral spectrum splitting system with perovskite photovoltaic cells\",\"authors\":\"Benjamin D. Chrysler, S. Shaheen, R. Kostuk\",\"doi\":\"10.1117/1.JPE.12.022206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We examine the potential of a multijunction spectrum-splitting photovoltaic (PV) solar energy system with perovskite PV cells. Spectrum splitting allows combinations of different energy band gap PV cells that are laterally separated and avoids the complications of fabricating tandem stack architectures. Volume holographic optical elements have been shown to be effective for the spectrum-splitting operation and can be incorporated into compact module packages. However, one of the remaining issues for spectrum splitting systems is the availability of low-cost wide band gap and intermediate band gap cells that are required for realizing high overall conversion efficiency. Perovskite PV cells have been fabricated with a wide range of band gap energies that potentially satisfy the requirements for multijunction spectrum-splitting systems. A spectrum-splitting system is evaluated for a combination of perovskite PV cells with energy band gaps of 2.30, 1.63, and 1.25 eV and with conversion efficiencies of 10.4%, 21.6%, and 20.4%, respectively, which have been demonstrated experimentally in the literature. First, the design of a cascaded volume holographic lens for spectral separation in three spectral bands is presented. Second, a rigorous coupled wave model is developed for computing the diffraction efficiency of a cascaded hologram. The model accounts for cross-coupling between higher diffraction orders in the upper and lower holograms, which previous models have not accounted for but is included here with the experimental verification. Lastly, the optical losses in the system are analyzed and the hypothetical power conversion efficiency is calculated to be 26.7%.\",\"PeriodicalId\":16781,\"journal\":{\"name\":\"Journal of Photonics for Energy\",\"volume\":\"12 1\",\"pages\":\"022206 - 022206\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Photonics for Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JPE.12.022206\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Photonics for Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JPE.12.022206","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们研究了具有钙钛矿光伏电池的多结光谱分裂光伏(PV)太阳能系统的潜力。光谱分裂允许横向分离的不同能带隙PV电池的组合,并避免了制造串联堆叠结构的复杂性。体全息光学元件已被证明对光谱分裂操作是有效的,并且可以被结合到紧凑的模块封装中。然而,频谱分割系统的剩余问题之一是实现高整体转换效率所需的低成本宽带隙和中频隙单元的可用性。钙钛矿光伏电池已被制造成具有广泛的带隙能量,这些带隙能量可能满足多结光谱分裂系统的要求。对能带隙分别为2.30、1.63和1.25eV,转换效率分别为10.4%、21.6%和20.4%的钙钛矿光伏电池组合的光谱分裂系统进行了评估,这已在文献中得到实验证明。首先,设计了一种级联体全息透镜,用于三个光谱带的光谱分离。其次,建立了计算级联全息图衍射效率的严格耦合波模型。该模型考虑了上全息图和下全息图中较高衍射级之间的交叉耦合,以前的模型没有考虑到这一点,但在实验验证中也包括了这一点。最后,分析了系统中的光学损耗,计算出假设的功率转换效率为26.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lateral spectrum splitting system with perovskite photovoltaic cells
Abstract. We examine the potential of a multijunction spectrum-splitting photovoltaic (PV) solar energy system with perovskite PV cells. Spectrum splitting allows combinations of different energy band gap PV cells that are laterally separated and avoids the complications of fabricating tandem stack architectures. Volume holographic optical elements have been shown to be effective for the spectrum-splitting operation and can be incorporated into compact module packages. However, one of the remaining issues for spectrum splitting systems is the availability of low-cost wide band gap and intermediate band gap cells that are required for realizing high overall conversion efficiency. Perovskite PV cells have been fabricated with a wide range of band gap energies that potentially satisfy the requirements for multijunction spectrum-splitting systems. A spectrum-splitting system is evaluated for a combination of perovskite PV cells with energy band gaps of 2.30, 1.63, and 1.25 eV and with conversion efficiencies of 10.4%, 21.6%, and 20.4%, respectively, which have been demonstrated experimentally in the literature. First, the design of a cascaded volume holographic lens for spectral separation in three spectral bands is presented. Second, a rigorous coupled wave model is developed for computing the diffraction efficiency of a cascaded hologram. The model accounts for cross-coupling between higher diffraction orders in the upper and lower holograms, which previous models have not accounted for but is included here with the experimental verification. Lastly, the optical losses in the system are analyzed and the hypothetical power conversion efficiency is calculated to be 26.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Photonics for Energy
Journal of Photonics for Energy MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
3.20
自引率
5.90%
发文量
28
审稿时长
>12 weeks
期刊介绍: The Journal of Photonics for Energy publishes peer-reviewed papers covering fundamental and applied research areas focused on the applications of photonics for renewable energy harvesting, conversion, storage, distribution, monitoring, consumption, and efficient usage.
期刊最新文献
Techno-economic analysis of a solar thermophotovoltaic system for a residential building Solar-pumped composite YAG/Ce:Nd:YAG/YAG laser with reduced thermal effects Thermodynamic figure of merit for thermophotovoltaics Main performance metrics of thermophotovoltaic devices: analyzing the state of the art Luminescent coupling effect in InGaP/GaAs/InGaAs inverted metamorphic triple-junction solar cell
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1