变量选择及近红外光谱法快速测定福专茶中茶多酚含量的影响

IF 2.1 4区 农林科学 Cyta-Journal of Food Pub Date : 2022-10-14 DOI:10.1080/19476337.2022.2128429
Jingxue Liu, J. Xin, T. Gao, Fengyi Li, Xie Tian
{"title":"变量选择及近红外光谱法快速测定福专茶中茶多酚含量的影响","authors":"Jingxue Liu, J. Xin, T. Gao, Fengyi Li, Xie Tian","doi":"10.1080/19476337.2022.2128429","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study attempted to measure the total polyphenols contents in Fuzhuan tea by near-infrared (NIR) spectroscopy coupled with an appropriate multivariate calibration method. Partial least squares (PLS), synergy interval PLS (si-PLS), and genetic algorithm-based PLS (ga-PLS) were carried out comparatively to calibrate regression models. The root mean square error of prediction (RMSEP), determination coefficient (Rp2), and P-value between the true and predicted values of prediction set were used to evaluate the performance of the final model. The ga-PLS model showed the best performance compared with the PLS and si-PLS models. The optimal model obtained Rp2 = 0.9996 and RMSEP = 0.0488 for the prediction set using only 37 spectral data points. No significant difference was observed between the true and predicted tea polyphenol contents in the prediction set (P > 0.05). NIR spectroscopy together with the ga-PLS algorithm can be used to rapidly predict the total polyphenol contents in Fuzhuan tea.","PeriodicalId":49084,"journal":{"name":"Cyta-Journal of Food","volume":"20 1","pages":"236 - 243"},"PeriodicalIF":2.1000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of variable selection and rapid determination of total tea polyphenols contents in Fuzhuan tea by near-infrared spectroscopy\",\"authors\":\"Jingxue Liu, J. Xin, T. Gao, Fengyi Li, Xie Tian\",\"doi\":\"10.1080/19476337.2022.2128429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This study attempted to measure the total polyphenols contents in Fuzhuan tea by near-infrared (NIR) spectroscopy coupled with an appropriate multivariate calibration method. Partial least squares (PLS), synergy interval PLS (si-PLS), and genetic algorithm-based PLS (ga-PLS) were carried out comparatively to calibrate regression models. The root mean square error of prediction (RMSEP), determination coefficient (Rp2), and P-value between the true and predicted values of prediction set were used to evaluate the performance of the final model. The ga-PLS model showed the best performance compared with the PLS and si-PLS models. The optimal model obtained Rp2 = 0.9996 and RMSEP = 0.0488 for the prediction set using only 37 spectral data points. No significant difference was observed between the true and predicted tea polyphenol contents in the prediction set (P > 0.05). NIR spectroscopy together with the ga-PLS algorithm can be used to rapidly predict the total polyphenol contents in Fuzhuan tea.\",\"PeriodicalId\":49084,\"journal\":{\"name\":\"Cyta-Journal of Food\",\"volume\":\"20 1\",\"pages\":\"236 - 243\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyta-Journal of Food\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1080/19476337.2022.2128429\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyta-Journal of Food","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/19476337.2022.2128429","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本研究采用近红外(NIR)光谱法,结合适当的多变量定标方法测定茯茯茶中总多酚的含量。采用偏最小二乘(PLS)、协同区间PLS (si-PLS)和遗传算法PLS (ga-PLS)对回归模型进行校正。用预测均方根误差(RMSEP)、决定系数(Rp2)和预测集真实值与预测值之间的p值来评价最终模型的性能。与PLS和si-PLS模型相比,ga-PLS模型表现出最好的性能。最优模型仅使用37个光谱数据点,预测集的Rp2 = 0.9996, RMSEP = 0.0488。预测集中茶多酚含量的真实值与预测值之间无显著差异(P < 0.05)。近红外光谱结合ga-PLS算法可以快速预测茯茯茶中总多酚的含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of variable selection and rapid determination of total tea polyphenols contents in Fuzhuan tea by near-infrared spectroscopy
ABSTRACT This study attempted to measure the total polyphenols contents in Fuzhuan tea by near-infrared (NIR) spectroscopy coupled with an appropriate multivariate calibration method. Partial least squares (PLS), synergy interval PLS (si-PLS), and genetic algorithm-based PLS (ga-PLS) were carried out comparatively to calibrate regression models. The root mean square error of prediction (RMSEP), determination coefficient (Rp2), and P-value between the true and predicted values of prediction set were used to evaluate the performance of the final model. The ga-PLS model showed the best performance compared with the PLS and si-PLS models. The optimal model obtained Rp2 = 0.9996 and RMSEP = 0.0488 for the prediction set using only 37 spectral data points. No significant difference was observed between the true and predicted tea polyphenol contents in the prediction set (P > 0.05). NIR spectroscopy together with the ga-PLS algorithm can be used to rapidly predict the total polyphenol contents in Fuzhuan tea.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Cyta-Journal of Food
Cyta-Journal of Food FOOD SCIENCE & TECHNOLOGY-
CiteScore
4.40
自引率
0.00%
发文量
37
期刊介绍: CyTA – Journal of Food is an Open Access journal that publishes original peer-reviewed research papers dealing with a wide range of subjects which are essential to the food scientist and technologist. Topics include: chemical analysis of food; additives and toxins in food; sensory, nutritional and physiological aspects of food; food microbiology and biotechnology; changes during the processing and storage of foods; effect of the use of agrochemicals in foods; quality control in food; and food engineering and technology.
期刊最新文献
Optimization of the ultrasonic-assisted enzymatic extraction of polysaccharides from Dendrobium offcinale Kimura et Migo and bioactivity study Effects of theasaponin E1 on the regulationglucose uptake of C2C12 myoblasts PI3K/Akt/mTOR signaling pathway Protective effect of bamboo root dietary Fibre on hyperlipidaemia mice induced by high-fat diet The effects of propolis on doxorubicin-induced hepatorenal damage: a comparison of ethanolic and oily extracts of propolis Development and optimization of methylcellulose-based edible coating using response surface methodology for improved quality management of ready-to-eat pomegranate arils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1