{"title":"基于回归的机器学习方法分析和综合L形和t形柔性紧凑型微带天线","authors":"M. Bicer","doi":"10.1515/freq-2022-0070","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this study was to analyze and synthesize L-shaped compact microstrip antennas (LCMA) and T-shaped compact microstrip antennas using regression-based machine learning algorithms (TCMA). This was accomplished by simulating 3808 LCMAs and 900 TCMAs operating at UHF and SHF frequencies with different physical and electrical characteristics. The acquired data was utilized to create a data set containing the antennas’ physical and electrical characteristics, as well as their resonant frequencies in the TM010 mode. Four baseline regression models and seven machine learning models were developed to determine the resonance frequency of antennas and the values of the physical parameters required for a particular frequency. To examine the efficacy of machine learning models, three-dimensional LCMAs and TCMAs were created using polylactic acid (PLA) and felt-based flexible substrates, as well as copper tape. The results illustrate the feasibility of using machine learning models for LCMA and TCMA analysis and synthesis.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"77 1","pages":"281 - 292"},"PeriodicalIF":0.8000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and synthesis of L- and T-shaped flexible compact microstrip antennas using regression-based machine learning approaches\",\"authors\":\"M. Bicer\",\"doi\":\"10.1515/freq-2022-0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this study was to analyze and synthesize L-shaped compact microstrip antennas (LCMA) and T-shaped compact microstrip antennas using regression-based machine learning algorithms (TCMA). This was accomplished by simulating 3808 LCMAs and 900 TCMAs operating at UHF and SHF frequencies with different physical and electrical characteristics. The acquired data was utilized to create a data set containing the antennas’ physical and electrical characteristics, as well as their resonant frequencies in the TM010 mode. Four baseline regression models and seven machine learning models were developed to determine the resonance frequency of antennas and the values of the physical parameters required for a particular frequency. To examine the efficacy of machine learning models, three-dimensional LCMAs and TCMAs were created using polylactic acid (PLA) and felt-based flexible substrates, as well as copper tape. The results illustrate the feasibility of using machine learning models for LCMA and TCMA analysis and synthesis.\",\"PeriodicalId\":55143,\"journal\":{\"name\":\"Frequenz\",\"volume\":\"77 1\",\"pages\":\"281 - 292\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frequenz\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/freq-2022-0070\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2022-0070","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analysis and synthesis of L- and T-shaped flexible compact microstrip antennas using regression-based machine learning approaches
Abstract The purpose of this study was to analyze and synthesize L-shaped compact microstrip antennas (LCMA) and T-shaped compact microstrip antennas using regression-based machine learning algorithms (TCMA). This was accomplished by simulating 3808 LCMAs and 900 TCMAs operating at UHF and SHF frequencies with different physical and electrical characteristics. The acquired data was utilized to create a data set containing the antennas’ physical and electrical characteristics, as well as their resonant frequencies in the TM010 mode. Four baseline regression models and seven machine learning models were developed to determine the resonance frequency of antennas and the values of the physical parameters required for a particular frequency. To examine the efficacy of machine learning models, three-dimensional LCMAs and TCMAs were created using polylactic acid (PLA) and felt-based flexible substrates, as well as copper tape. The results illustrate the feasibility of using machine learning models for LCMA and TCMA analysis and synthesis.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.