Zhongyu Li, Tingguo Liu, Jicun Shi, U. Veranko, V. Zankavich
{"title":"沥青混凝土路面的抗疲劳性能。潜力的特殊性和评估","authors":"Zhongyu Li, Tingguo Liu, Jicun Shi, U. Veranko, V. Zankavich","doi":"10.3846/BJRBE.2017.34","DOIUrl":null,"url":null,"abstract":"This article presents the results of research of processes of deformation and destruction of asphalt concrete pavements under cyclic loads. As the ground for such approach to estimation of the asphalt concrete properties served the proof that regardless of the composition and structure of asphalt concrete with an equal amount of elastic (viscoplastic) bonds possess the same relaxation ability. This situation is a significant feature of the behaviour of asphalt concrete, which opens the way for the development of certain approaches to the analysis of their properties, evaluation of reliability and durability. The promising methodology for the comparative assessment of fatigue and cyclic durability of asphalt concrete by exploring the complex set of elastic and viscoplastic bonds in their structure depending on the temperature, magnitude, and modes of action of the loads is proposed in the presented work. In the future, the establishment of patterns of behaviour of asphalt concretes with the same set of elastic bonds is allows to optimize compositions based on the principles of temperature-structural analogy that is relevant in studying fatigue and cyclic durability as well as low-temperature crack resistance and shear stability.","PeriodicalId":55402,"journal":{"name":"Baltic Journal of Road and Bridge Engineering","volume":"12 1","pages":"270-275"},"PeriodicalIF":0.6000,"publicationDate":"2017-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fatigue Resistance of Asphalt Concrete Pavements. Peculiarity and Assessments of Potentials\",\"authors\":\"Zhongyu Li, Tingguo Liu, Jicun Shi, U. Veranko, V. Zankavich\",\"doi\":\"10.3846/BJRBE.2017.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents the results of research of processes of deformation and destruction of asphalt concrete pavements under cyclic loads. As the ground for such approach to estimation of the asphalt concrete properties served the proof that regardless of the composition and structure of asphalt concrete with an equal amount of elastic (viscoplastic) bonds possess the same relaxation ability. This situation is a significant feature of the behaviour of asphalt concrete, which opens the way for the development of certain approaches to the analysis of their properties, evaluation of reliability and durability. The promising methodology for the comparative assessment of fatigue and cyclic durability of asphalt concrete by exploring the complex set of elastic and viscoplastic bonds in their structure depending on the temperature, magnitude, and modes of action of the loads is proposed in the presented work. In the future, the establishment of patterns of behaviour of asphalt concretes with the same set of elastic bonds is allows to optimize compositions based on the principles of temperature-structural analogy that is relevant in studying fatigue and cyclic durability as well as low-temperature crack resistance and shear stability.\",\"PeriodicalId\":55402,\"journal\":{\"name\":\"Baltic Journal of Road and Bridge Engineering\",\"volume\":\"12 1\",\"pages\":\"270-275\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2017-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Baltic Journal of Road and Bridge Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3846/BJRBE.2017.34\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Baltic Journal of Road and Bridge Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3846/BJRBE.2017.34","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Fatigue Resistance of Asphalt Concrete Pavements. Peculiarity and Assessments of Potentials
This article presents the results of research of processes of deformation and destruction of asphalt concrete pavements under cyclic loads. As the ground for such approach to estimation of the asphalt concrete properties served the proof that regardless of the composition and structure of asphalt concrete with an equal amount of elastic (viscoplastic) bonds possess the same relaxation ability. This situation is a significant feature of the behaviour of asphalt concrete, which opens the way for the development of certain approaches to the analysis of their properties, evaluation of reliability and durability. The promising methodology for the comparative assessment of fatigue and cyclic durability of asphalt concrete by exploring the complex set of elastic and viscoplastic bonds in their structure depending on the temperature, magnitude, and modes of action of the loads is proposed in the presented work. In the future, the establishment of patterns of behaviour of asphalt concretes with the same set of elastic bonds is allows to optimize compositions based on the principles of temperature-structural analogy that is relevant in studying fatigue and cyclic durability as well as low-temperature crack resistance and shear stability.
期刊介绍:
THE JOURNAL IS DESIGNED FOR PUBLISHING PAPERS CONCERNING THE FOLLOWING AREAS OF RESEARCH:
road and bridge research and design,
road construction materials and technologies,
bridge construction materials and technologies,
road and bridge repair,
road and bridge maintenance,
traffic safety,
road and bridge information technologies,
environmental issues,
road climatology,
low-volume roads,
normative documentation,
quality management and assurance,
road infrastructure and its assessment,
asset management,
road and bridge construction financing,
specialist pre-service and in-service training;