搜索和推荐学习资源的新方法

IF 1.2 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Cybernetics and Information Technologies Pub Date : 2023-06-01 DOI:10.2478/cait-2023-0019
Tran Thanh Dien, Nguyen Thanh-Hai, Nguyen Thai-Nghe
{"title":"搜索和推荐学习资源的新方法","authors":"Tran Thanh Dien, Nguyen Thanh-Hai, Nguyen Thai-Nghe","doi":"10.2478/cait-2023-0019","DOIUrl":null,"url":null,"abstract":"Abstract This study proposes models for searching and recommending learning resources to meet the needs of learners, helping to achieve better student performance results. The study suggests a general architecture for searching and recommending learning resources. It specifically proposes (1) the model of learning resource classification based on deep learning techniques such as MLP; (2) the approach for searching learning resources based on document similarity; (3) the model to predict learning performance using deep learning techniques including learning performance prediction model on all student data using CNN, another model on ability group using MLP, and the other model on per student using LSTM; (4) the learning resource recommendation model using deep matrix factorization. Experimental results show that the proposed models are feasible for the classification, search, ranking prediction, and recommendation of learning resources in higher education institutions.","PeriodicalId":45562,"journal":{"name":"Cybernetics and Information Technologies","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Approaches for Searching and Recommending Learning Resources\",\"authors\":\"Tran Thanh Dien, Nguyen Thanh-Hai, Nguyen Thai-Nghe\",\"doi\":\"10.2478/cait-2023-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study proposes models for searching and recommending learning resources to meet the needs of learners, helping to achieve better student performance results. The study suggests a general architecture for searching and recommending learning resources. It specifically proposes (1) the model of learning resource classification based on deep learning techniques such as MLP; (2) the approach for searching learning resources based on document similarity; (3) the model to predict learning performance using deep learning techniques including learning performance prediction model on all student data using CNN, another model on ability group using MLP, and the other model on per student using LSTM; (4) the learning resource recommendation model using deep matrix factorization. Experimental results show that the proposed models are feasible for the classification, search, ranking prediction, and recommendation of learning resources in higher education institutions.\",\"PeriodicalId\":45562,\"journal\":{\"name\":\"Cybernetics and Information Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cybernetics and Information Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/cait-2023-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cybernetics and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/cait-2023-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

摘要

摘要本研究提出了搜索和推荐学习资源的模型,以满足学习者的需求,帮助学生取得更好的成绩。该研究提出了一个搜索和推荐学习资源的通用架构。具体提出了(1)基于MLP等深度学习技术的学习资源分类模型;(2) 基于文档相似度的学习资源搜索方法;(3) 使用深度学习技术预测学习成绩的模型,包括使用CNN对所有学生数据的学习成绩预测模型,使用MLP对能力组的另一个模型,以及使用LSTM对每个学生的另一模型;(4) 使用深度矩阵分解的学习资源推荐模型。实验结果表明,该模型对高校学习资源的分类、搜索、排名预测和推荐是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel Approaches for Searching and Recommending Learning Resources
Abstract This study proposes models for searching and recommending learning resources to meet the needs of learners, helping to achieve better student performance results. The study suggests a general architecture for searching and recommending learning resources. It specifically proposes (1) the model of learning resource classification based on deep learning techniques such as MLP; (2) the approach for searching learning resources based on document similarity; (3) the model to predict learning performance using deep learning techniques including learning performance prediction model on all student data using CNN, another model on ability group using MLP, and the other model on per student using LSTM; (4) the learning resource recommendation model using deep matrix factorization. Experimental results show that the proposed models are feasible for the classification, search, ranking prediction, and recommendation of learning resources in higher education institutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cybernetics and Information Technologies
Cybernetics and Information Technologies COMPUTER SCIENCE, INFORMATION SYSTEMS-
CiteScore
3.20
自引率
25.00%
发文量
35
审稿时长
12 weeks
期刊最新文献
A Review on State-of-Art Blockchain Schemes for Electronic Health Records Management Degradation Recoloring Deutan CVD Image from Block SVD Watermark Integration Approaches for Heterogeneous Big Data: A Survey Efficient DenseNet Model with Fusion of Channel and Spatial Attention for Facial Expression Recognition Hybrid Edge Detection Methods in Image Steganography for High Embedding Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1