可可果皮活性炭制备储能用超级电容器

Rahma Fikri Nuradi, M. Muldarisnur, Y. Yetri
{"title":"可可果皮活性炭制备储能用超级电容器","authors":"Rahma Fikri Nuradi, M. Muldarisnur, Y. Yetri","doi":"10.25077/jif.14.2.86-94.2022","DOIUrl":null,"url":null,"abstract":"The supercapacitor electrode has been synthesized using activated carbon from cocoa pods. Activated carbon was prepared by first drying the raw materials under the sunlight and followed by oven drying, pre-carbonization, milling, sieving, and chemical activation with 0.3 M and 0.4 M KOH solution. After chemical activation, the activated carbon was printed into pellet form, carbonized at a temperature of 600 °C, followed by physical activation at a temperature of 700 °C for four hours before polishing. We found that the optimum conditions are 700 °C and 0.4 M. The density of the obtained carbon electrode is 0.810 g/cm3. The SEM micrographs show the formation of pores with a diameter of 0.44 μm and 0.98 μm. The carbon content in the electrode sample measured using electron dispersive spectroscopy is 91.49%. The XRD data shows that the carbon electrode is amorphous with a diffraction angle (2θ) at 23.569° and 44.781°. The optimum specific capacitance of the supercapacitor is 140.2 F/g obtained for the sample activated for 2.5 hours.","PeriodicalId":52720,"journal":{"name":"JIF Jurnal Ilmu Fisika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Synthesis of Supercapacitor from Cocoa Fruit Peel Activated Carbon for Energy Storage\",\"authors\":\"Rahma Fikri Nuradi, M. Muldarisnur, Y. Yetri\",\"doi\":\"10.25077/jif.14.2.86-94.2022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The supercapacitor electrode has been synthesized using activated carbon from cocoa pods. Activated carbon was prepared by first drying the raw materials under the sunlight and followed by oven drying, pre-carbonization, milling, sieving, and chemical activation with 0.3 M and 0.4 M KOH solution. After chemical activation, the activated carbon was printed into pellet form, carbonized at a temperature of 600 °C, followed by physical activation at a temperature of 700 °C for four hours before polishing. We found that the optimum conditions are 700 °C and 0.4 M. The density of the obtained carbon electrode is 0.810 g/cm3. The SEM micrographs show the formation of pores with a diameter of 0.44 μm and 0.98 μm. The carbon content in the electrode sample measured using electron dispersive spectroscopy is 91.49%. The XRD data shows that the carbon electrode is amorphous with a diffraction angle (2θ) at 23.569° and 44.781°. The optimum specific capacitance of the supercapacitor is 140.2 F/g obtained for the sample activated for 2.5 hours.\",\"PeriodicalId\":52720,\"journal\":{\"name\":\"JIF Jurnal Ilmu Fisika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIF Jurnal Ilmu Fisika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jif.14.2.86-94.2022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIF Jurnal Ilmu Fisika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jif.14.2.86-94.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

以可可荚为原料,用活性炭合成了超级电容器电极。首先将原料在阳光下干燥,然后进行烘箱干燥、预碳化、磨粉、筛分、用0.3 M和0.4 M KOH溶液化学活化制备活性炭。经化学活化后,将活性炭打印成颗粒状,在600℃下碳化,然后在700℃下物理活化4小时,最后抛光。我们发现最佳条件是700°C和0.4 m,得到的碳电极密度为0.810 g/cm3。SEM显微图显示形成了直径分别为0.44 μm和0.98 μm的孔隙。用电子色散谱法测得电极样品中的碳含量为91.49%。XRD数据表明,碳电极呈无定形,在23.569°和44.781°处的衍射角为2θ。在活化2.5小时的情况下,超级电容器的最佳比电容为140.2 F/g。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of Supercapacitor from Cocoa Fruit Peel Activated Carbon for Energy Storage
The supercapacitor electrode has been synthesized using activated carbon from cocoa pods. Activated carbon was prepared by first drying the raw materials under the sunlight and followed by oven drying, pre-carbonization, milling, sieving, and chemical activation with 0.3 M and 0.4 M KOH solution. After chemical activation, the activated carbon was printed into pellet form, carbonized at a temperature of 600 °C, followed by physical activation at a temperature of 700 °C for four hours before polishing. We found that the optimum conditions are 700 °C and 0.4 M. The density of the obtained carbon electrode is 0.810 g/cm3. The SEM micrographs show the formation of pores with a diameter of 0.44 μm and 0.98 μm. The carbon content in the electrode sample measured using electron dispersive spectroscopy is 91.49%. The XRD data shows that the carbon electrode is amorphous with a diffraction angle (2θ) at 23.569° and 44.781°. The optimum specific capacitance of the supercapacitor is 140.2 F/g obtained for the sample activated for 2.5 hours.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
6 weeks
期刊最新文献
Development of River Flow and Water Quality Using IOT-based Smart Buoys Environment Monitoring System Particle Size Improvement and Layer Absorption of Metil Halida MAPbI3 Perovskite Doping Phenethylammonium Iodide (PEAI) Efficiency at Maximum Power of Endoreversible Quantum Otto Engine with Partial Thermalization in 3D Harmonic Potential Wind Gust Parameterization Assessment under Convective and Non-convective Events: A Case Study at the Kertajati International Airport An Analysis of the Schrodinger Equation Model for the Distribution Rate of Stock Returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1