用于7-nm芯片封装相互作用(CPI)技术的Cu柱凸块开发

Lei Fu, M. Bhagavat, C. Selvanayagam, Ken Leong, Ivor Barber
{"title":"用于7-nm芯片封装相互作用(CPI)技术的Cu柱凸块开发","authors":"Lei Fu, M. Bhagavat, C. Selvanayagam, Ken Leong, Ivor Barber","doi":"10.4071/imaps.968260","DOIUrl":null,"url":null,"abstract":"\n Power, performance, and area gains are important metrics driving the complementary metal–oxide–semiconductor (CMOS) technology from older nodes to newer ones. Over past several decades, a steady downscaling of feature sizes of CMOS technology has been a leading force enabling continual improvement in circuit speeds and cost per functionality. Increase in functionality drives larger number of inputs/outputs (I/Os), and the scaling-driven small intellectual property (IP) block sizes force these larger number of I/Os to be accommodated by reduction of I/O pitches. The result is an unrelenting pressure to reduce bump pitches from one generation of CMOS to another. In contrast to 14-nm/16-nm nodes which used 150-um bump pitch coming out of a die, for 7-nm node, the industry is targeting 130-um bump pitch for high performance devices. With this pitch reduction, conventional tin/silver (SnAg) solder bumps face limitations in terms of bridging. Cu pillar bumps are the best candidate for smaller bump pitches. However, for large die sizes prevalent in high-performance computing (HPC), the Cu pillar bumps will induce higher stress on the silicon resulting in higher risks of extremely low K (ELK) cracking. If copper pillar bumps are not properly developed, then there is a risk of marginal reliability in terms of chip package interaction. The situation becomes even more dire in large die sizes, where coefficient of thermal expansion mismatch between silicon and laminate substrate magnifies the stress. The present article discusses successful development of Cu pillar bumps for 7-nm technology. The development program included a 2-step development path. In the first step, extensive thermomechanical modeling was carried out to find optimal design of copper pillar bump for robustness of interactions with 7-nm back end of line ELK layers. In the second step, a 460-mm2 7-nm Silicon test vehicle was fabricated, and its assembly process was optimized to characterize the copper pillar bumps and prove their extended reliability on 7-nm silicon. As a result of this development, copper pillar technology has been qualified on Advanced Micro Devices (AMD) products. Today, copper pillar is a fully integral part of AMD's ever-growing 7-nm product offering in HPC.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cu Pillar Bump Development for 7-nm Chip Package Interaction (CPI) Technology\",\"authors\":\"Lei Fu, M. Bhagavat, C. Selvanayagam, Ken Leong, Ivor Barber\",\"doi\":\"10.4071/imaps.968260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Power, performance, and area gains are important metrics driving the complementary metal–oxide–semiconductor (CMOS) technology from older nodes to newer ones. Over past several decades, a steady downscaling of feature sizes of CMOS technology has been a leading force enabling continual improvement in circuit speeds and cost per functionality. Increase in functionality drives larger number of inputs/outputs (I/Os), and the scaling-driven small intellectual property (IP) block sizes force these larger number of I/Os to be accommodated by reduction of I/O pitches. The result is an unrelenting pressure to reduce bump pitches from one generation of CMOS to another. In contrast to 14-nm/16-nm nodes which used 150-um bump pitch coming out of a die, for 7-nm node, the industry is targeting 130-um bump pitch for high performance devices. With this pitch reduction, conventional tin/silver (SnAg) solder bumps face limitations in terms of bridging. Cu pillar bumps are the best candidate for smaller bump pitches. However, for large die sizes prevalent in high-performance computing (HPC), the Cu pillar bumps will induce higher stress on the silicon resulting in higher risks of extremely low K (ELK) cracking. If copper pillar bumps are not properly developed, then there is a risk of marginal reliability in terms of chip package interaction. The situation becomes even more dire in large die sizes, where coefficient of thermal expansion mismatch between silicon and laminate substrate magnifies the stress. The present article discusses successful development of Cu pillar bumps for 7-nm technology. The development program included a 2-step development path. In the first step, extensive thermomechanical modeling was carried out to find optimal design of copper pillar bump for robustness of interactions with 7-nm back end of line ELK layers. In the second step, a 460-mm2 7-nm Silicon test vehicle was fabricated, and its assembly process was optimized to characterize the copper pillar bumps and prove their extended reliability on 7-nm silicon. As a result of this development, copper pillar technology has been qualified on Advanced Micro Devices (AMD) products. Today, copper pillar is a fully integral part of AMD's ever-growing 7-nm product offering in HPC.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/imaps.968260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/imaps.968260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

功率、性能和面积增益是推动互补金属氧化物半导体(CMOS)技术从旧节点向新节点发展的重要指标。在过去的几十年里,CMOS技术特征尺寸的稳步缩小一直是推动电路速度和每功能成本不断提高的主要力量。功能的增加驱动了更多的输入/输出(I/O),而扩展驱动的小知识产权(IP)块大小迫使通过减少I/O间距来容纳这些更大数量的I/O。其结果是不断减小从一代CMOS到另一代CMOS的凹凸间距。相较于14nm / 16nm节点采用150um凸距的芯片,对于7nm节点,业界的目标是130um凸距用于高性能器件。随着间距的减小,传统锡/银(SnAg)焊料凸起在桥接方面面临限制。铜柱凸点是较小凸点的最佳候选。然而,对于高性能计算(HPC)中普遍存在的大尺寸模具,铜柱凸起将在硅上引起更高的应力,从而导致极低K (ELK)开裂的风险更高。如果铜柱凸起没有得到适当的开发,那么就芯片封装相互作用而言,存在边际可靠性的风险。在大尺寸的模具中,硅与层压衬底之间的热膨胀系数不匹配放大了应力,这种情况变得更加严重。本文讨论了用于7纳米技术的铜柱凸点的成功开发。该发展计划包括两步发展路径。在第一步中,进行了广泛的热力学建模,以找到铜柱凸起的最佳设计,以确保与7 nm线ELK层后端相互作用的鲁棒性。第二步,制作了一个460-mm2的7纳米硅测试车,并对其组装工艺进行了优化,以表征铜柱凸起,并证明其在7纳米硅上的扩展可靠性。由于这一发展,铜柱技术已经在高级微设备(AMD)产品上获得了资格。今天,铜柱是AMD在高性能计算领域不断增长的7nm产品中不可或缺的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cu Pillar Bump Development for 7-nm Chip Package Interaction (CPI) Technology
Power, performance, and area gains are important metrics driving the complementary metal–oxide–semiconductor (CMOS) technology from older nodes to newer ones. Over past several decades, a steady downscaling of feature sizes of CMOS technology has been a leading force enabling continual improvement in circuit speeds and cost per functionality. Increase in functionality drives larger number of inputs/outputs (I/Os), and the scaling-driven small intellectual property (IP) block sizes force these larger number of I/Os to be accommodated by reduction of I/O pitches. The result is an unrelenting pressure to reduce bump pitches from one generation of CMOS to another. In contrast to 14-nm/16-nm nodes which used 150-um bump pitch coming out of a die, for 7-nm node, the industry is targeting 130-um bump pitch for high performance devices. With this pitch reduction, conventional tin/silver (SnAg) solder bumps face limitations in terms of bridging. Cu pillar bumps are the best candidate for smaller bump pitches. However, for large die sizes prevalent in high-performance computing (HPC), the Cu pillar bumps will induce higher stress on the silicon resulting in higher risks of extremely low K (ELK) cracking. If copper pillar bumps are not properly developed, then there is a risk of marginal reliability in terms of chip package interaction. The situation becomes even more dire in large die sizes, where coefficient of thermal expansion mismatch between silicon and laminate substrate magnifies the stress. The present article discusses successful development of Cu pillar bumps for 7-nm technology. The development program included a 2-step development path. In the first step, extensive thermomechanical modeling was carried out to find optimal design of copper pillar bump for robustness of interactions with 7-nm back end of line ELK layers. In the second step, a 460-mm2 7-nm Silicon test vehicle was fabricated, and its assembly process was optimized to characterize the copper pillar bumps and prove their extended reliability on 7-nm silicon. As a result of this development, copper pillar technology has been qualified on Advanced Micro Devices (AMD) products. Today, copper pillar is a fully integral part of AMD's ever-growing 7-nm product offering in HPC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microelectronics and Electronic Packaging
Journal of Microelectronics and Electronic Packaging Engineering-Electrical and Electronic Engineering
CiteScore
1.30
自引率
0.00%
发文量
5
期刊介绍: The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.
期刊最新文献
Study on the Manufacturability of X Dimension Fan Out Integration Package with Organic RDLs (XDFOI-O) AlGaN High Electron Mobility Transistor for High-Temperature Logic A Novel Approach for Characterizing Epoxy Mold Compound High Temperature Swelling Dual-Band Dual-Polarized Antennas for 5G mmWave Base Stations An Evaluation on the Mechanical and Conductive Performance of Electrically Conductive Film Adhesives with Glass Fabric Carriers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1