{"title":"塑造不确定的框架","authors":"P. Mayencourt, J. Ochsendorf, C. Mueller","doi":"10.20898/j.iass.2021.011","DOIUrl":null,"url":null,"abstract":"The large impact of building structures on the environment must be reduced to meet the global targets fixed by the Intergovernmental Panel on Climate Change. Standard building structures with constant prismatic cross-section have material inefficiencies of around 66% (and up to 75%\n in some cases) that need to be addressed. Structural shaping, a subfield of shape optimization, offers a pathway to reduce the impact of building materials on the environment. Shaping statically determinate structures such as simply supported beams is relatively straightforward, but offers\n few design options compared to statically indeterminate structures. However, no methods provide an efficient way for designers to shape these systems according to their design intent or efficiency goals. Based on plasticity theory, this paper presents a shaping methodology to explore the design\n space of shaped indeterminate frame structures. The methodology is implemented in three case studies. In all the case studies, the methodology allows for the exploration of material-efficient yet diverse designs of shaped indeterminate frame structures. The implementation of this\n methodology can promote the use of structural shaping by offering more agency to structural designers to create diverse and efficient structural systems.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shaping Indeterminate Frames\",\"authors\":\"P. Mayencourt, J. Ochsendorf, C. Mueller\",\"doi\":\"10.20898/j.iass.2021.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The large impact of building structures on the environment must be reduced to meet the global targets fixed by the Intergovernmental Panel on Climate Change. Standard building structures with constant prismatic cross-section have material inefficiencies of around 66% (and up to 75%\\n in some cases) that need to be addressed. Structural shaping, a subfield of shape optimization, offers a pathway to reduce the impact of building materials on the environment. Shaping statically determinate structures such as simply supported beams is relatively straightforward, but offers\\n few design options compared to statically indeterminate structures. However, no methods provide an efficient way for designers to shape these systems according to their design intent or efficiency goals. Based on plasticity theory, this paper presents a shaping methodology to explore the design\\n space of shaped indeterminate frame structures. The methodology is implemented in three case studies. In all the case studies, the methodology allows for the exploration of material-efficient yet diverse designs of shaped indeterminate frame structures. The implementation of this\\n methodology can promote the use of structural shaping by offering more agency to structural designers to create diverse and efficient structural systems.\",\"PeriodicalId\":42855,\"journal\":{\"name\":\"Journal of the International Association for Shell and Spatial Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the International Association for Shell and Spatial Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20898/j.iass.2021.011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/j.iass.2021.011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
The large impact of building structures on the environment must be reduced to meet the global targets fixed by the Intergovernmental Panel on Climate Change. Standard building structures with constant prismatic cross-section have material inefficiencies of around 66% (and up to 75%
in some cases) that need to be addressed. Structural shaping, a subfield of shape optimization, offers a pathway to reduce the impact of building materials on the environment. Shaping statically determinate structures such as simply supported beams is relatively straightforward, but offers
few design options compared to statically indeterminate structures. However, no methods provide an efficient way for designers to shape these systems according to their design intent or efficiency goals. Based on plasticity theory, this paper presents a shaping methodology to explore the design
space of shaped indeterminate frame structures. The methodology is implemented in three case studies. In all the case studies, the methodology allows for the exploration of material-efficient yet diverse designs of shaped indeterminate frame structures. The implementation of this
methodology can promote the use of structural shaping by offering more agency to structural designers to create diverse and efficient structural systems.
期刊介绍:
The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.