{"title":"一种用于环境射频能量采集的新型高灵敏度宽带整流器","authors":"X. Wang, B. Jin, L. Huang, M. Zhang, M. Fang","doi":"10.13164/re.2022.0331","DOIUrl":null,"url":null,"abstract":". In this paper, a novel high-sensitivity broadband rectifier is proposed aiming at ambient radio frequency (RF) energy harvesting. Traditionally, voltage doubling rectifying circuit is used to design high-sensitivity rectifier. But when the input power is lower, the rectifying efficiency is significantly reduced. Therefore, an improved parallel half-wave rectifying circuit is proposed in this article which can convert RF energy in the whole period. And the proposed rectifying circuit can work better in lower power environment and has a higher efficiency level. Besides, the impedance match is also important component of rectifier. Due to the nonlinearity and complexity of rectifying circuit, achieving wideband matching network is a challenge. Thus, a design approach of broadband impedance circuit is given in this study. Combining with the proposed high-sensitivity rectifying circuit, a high-sensitivity wideband rectifier can be generated, when the input power is –15 dBm, –20 dBm, –25 dBm, the efficiency is 43%, 32%, 20%, respectively. Finally, a second-order wideband rectifier with high sensitivity is realized, and the range of bandwidth can cover four main frequency bands of GSM 900 MHz, GSM 1800 MHz, UMTS 2100 MHz, WLAN 2400 MHz. To verify the validity, the rectifier is fabricated and measured, and the measurement has a good agreement with simulation results.","PeriodicalId":54514,"journal":{"name":"Radioengineering","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel High-Sensitivity Broadband Rectifier for Ambient RF Energy Harvesting\",\"authors\":\"X. Wang, B. Jin, L. Huang, M. Zhang, M. Fang\",\"doi\":\"10.13164/re.2022.0331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this paper, a novel high-sensitivity broadband rectifier is proposed aiming at ambient radio frequency (RF) energy harvesting. Traditionally, voltage doubling rectifying circuit is used to design high-sensitivity rectifier. But when the input power is lower, the rectifying efficiency is significantly reduced. Therefore, an improved parallel half-wave rectifying circuit is proposed in this article which can convert RF energy in the whole period. And the proposed rectifying circuit can work better in lower power environment and has a higher efficiency level. Besides, the impedance match is also important component of rectifier. Due to the nonlinearity and complexity of rectifying circuit, achieving wideband matching network is a challenge. Thus, a design approach of broadband impedance circuit is given in this study. Combining with the proposed high-sensitivity rectifying circuit, a high-sensitivity wideband rectifier can be generated, when the input power is –15 dBm, –20 dBm, –25 dBm, the efficiency is 43%, 32%, 20%, respectively. Finally, a second-order wideband rectifier with high sensitivity is realized, and the range of bandwidth can cover four main frequency bands of GSM 900 MHz, GSM 1800 MHz, UMTS 2100 MHz, WLAN 2400 MHz. To verify the validity, the rectifier is fabricated and measured, and the measurement has a good agreement with simulation results.\",\"PeriodicalId\":54514,\"journal\":{\"name\":\"Radioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.13164/re.2022.0331\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.13164/re.2022.0331","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A Novel High-Sensitivity Broadband Rectifier for Ambient RF Energy Harvesting
. In this paper, a novel high-sensitivity broadband rectifier is proposed aiming at ambient radio frequency (RF) energy harvesting. Traditionally, voltage doubling rectifying circuit is used to design high-sensitivity rectifier. But when the input power is lower, the rectifying efficiency is significantly reduced. Therefore, an improved parallel half-wave rectifying circuit is proposed in this article which can convert RF energy in the whole period. And the proposed rectifying circuit can work better in lower power environment and has a higher efficiency level. Besides, the impedance match is also important component of rectifier. Due to the nonlinearity and complexity of rectifying circuit, achieving wideband matching network is a challenge. Thus, a design approach of broadband impedance circuit is given in this study. Combining with the proposed high-sensitivity rectifying circuit, a high-sensitivity wideband rectifier can be generated, when the input power is –15 dBm, –20 dBm, –25 dBm, the efficiency is 43%, 32%, 20%, respectively. Finally, a second-order wideband rectifier with high sensitivity is realized, and the range of bandwidth can cover four main frequency bands of GSM 900 MHz, GSM 1800 MHz, UMTS 2100 MHz, WLAN 2400 MHz. To verify the validity, the rectifier is fabricated and measured, and the measurement has a good agreement with simulation results.
期刊介绍:
Since 1992, the Radioengineering Journal has been publishing original scientific and engineering papers from the area of wireless communication and application of wireless technologies. The submitted papers are expected to deal with electromagnetics (antennas, propagation, microwaves), signals, circuits, optics and related fields.
Each issue of the Radioengineering Journal is started by a feature article. Feature articles are organized by members of the Editorial Board to present the latest development in the selected areas of radio engineering.
The Radioengineering Journal makes a maximum effort to publish submitted papers as quickly as possible. The first round of reviews should be completed within two months. Then, authors are expected to improve their manuscript within one month. If substantial changes are recommended and further reviews are requested by the reviewers, the publication time is prolonged.