Zhenlin Wang, Zhengkui Ge, Ying Wang, Qi Wang, Xiaoxiao Han, Ming Li
{"title":"3种典型滨水植物(Cynodon dactylon、Alternanthera philoxeroides和Acorus菖蒲)对不同深度涝渍的耐受性不同,导致土壤养分释放和微生物多样性的变化","authors":"Zhenlin Wang, Zhengkui Ge, Ying Wang, Qi Wang, Xiaoxiao Han, Ming Li","doi":"10.2166/wqrj.2022.125","DOIUrl":null,"url":null,"abstract":"\n Water-level changes in the water-level fluctuating zone (WLFZ) promoted soil and plants to release nutrients into the water, threatening the water health in the reservoir. Plant restoration in the WLFZ is also an important way to reduce the nutrient release in order to select plants that can effectively reduce the release of soil nutrients under changing water levels. This study conducted a flooding experiment to reveal the difference in the change in soil physico-chemical properties and microbial communities planted with various plants under different water-level conditions. The flooding experiment began at the end of September 2020 and was planted with three dominant plants common to reservoirs, namely Cynodon dactylon, Alternanthera philoxeroides, and Acorus calamus. Our study found the three common dominant plants along the reservoir, and C. dactylon had a good adsorption capacity for nitrogen and phosphorus when it was flooded with shallow water, decreasing soil nutrients during the drying period. After a wetting–drying cycle, there was an obvious and significant (p < 0.05) divergence among soil microbial community structures between N0 and D1, D2, and D3, respectively. This study could provide sufficient reference information for plant selection and the assessment of nutrient release of WLFZ in restoration work.","PeriodicalId":23720,"journal":{"name":"Water Quality Research Journal","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2022-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different tolerance of three typical riparian plants (Cynodon dactylon, Alternanthera philoxeroides, and Acorus calamus) to different depths of waterlogging caused variations in soil nutrient release and microbial diversity\",\"authors\":\"Zhenlin Wang, Zhengkui Ge, Ying Wang, Qi Wang, Xiaoxiao Han, Ming Li\",\"doi\":\"10.2166/wqrj.2022.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Water-level changes in the water-level fluctuating zone (WLFZ) promoted soil and plants to release nutrients into the water, threatening the water health in the reservoir. Plant restoration in the WLFZ is also an important way to reduce the nutrient release in order to select plants that can effectively reduce the release of soil nutrients under changing water levels. This study conducted a flooding experiment to reveal the difference in the change in soil physico-chemical properties and microbial communities planted with various plants under different water-level conditions. The flooding experiment began at the end of September 2020 and was planted with three dominant plants common to reservoirs, namely Cynodon dactylon, Alternanthera philoxeroides, and Acorus calamus. Our study found the three common dominant plants along the reservoir, and C. dactylon had a good adsorption capacity for nitrogen and phosphorus when it was flooded with shallow water, decreasing soil nutrients during the drying period. After a wetting–drying cycle, there was an obvious and significant (p < 0.05) divergence among soil microbial community structures between N0 and D1, D2, and D3, respectively. This study could provide sufficient reference information for plant selection and the assessment of nutrient release of WLFZ in restoration work.\",\"PeriodicalId\":23720,\"journal\":{\"name\":\"Water Quality Research Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2022-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water Quality Research Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.2166/wqrj.2022.125\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Quality Research Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/wqrj.2022.125","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Different tolerance of three typical riparian plants (Cynodon dactylon, Alternanthera philoxeroides, and Acorus calamus) to different depths of waterlogging caused variations in soil nutrient release and microbial diversity
Water-level changes in the water-level fluctuating zone (WLFZ) promoted soil and plants to release nutrients into the water, threatening the water health in the reservoir. Plant restoration in the WLFZ is also an important way to reduce the nutrient release in order to select plants that can effectively reduce the release of soil nutrients under changing water levels. This study conducted a flooding experiment to reveal the difference in the change in soil physico-chemical properties and microbial communities planted with various plants under different water-level conditions. The flooding experiment began at the end of September 2020 and was planted with three dominant plants common to reservoirs, namely Cynodon dactylon, Alternanthera philoxeroides, and Acorus calamus. Our study found the three common dominant plants along the reservoir, and C. dactylon had a good adsorption capacity for nitrogen and phosphorus when it was flooded with shallow water, decreasing soil nutrients during the drying period. After a wetting–drying cycle, there was an obvious and significant (p < 0.05) divergence among soil microbial community structures between N0 and D1, D2, and D3, respectively. This study could provide sufficient reference information for plant selection and the assessment of nutrient release of WLFZ in restoration work.