基于聚类的阿拉伯语文档情感分类改进集成学习模型

IF 2.3 3区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Natural Language Engineering Pub Date : 2023-06-01 DOI:10.1017/s135132492300027x
Rana Husni Al Mahmoud, B. Hammo, Hossam Faris
{"title":"基于聚类的阿拉伯语文档情感分类改进集成学习模型","authors":"Rana Husni Al Mahmoud, B. Hammo, Hossam Faris","doi":"10.1017/s135132492300027x","DOIUrl":null,"url":null,"abstract":"\n This article reports on designing and implementing a multiclass sentiment classification approach to handle the imbalanced class distribution of Arabic documents. The proposed approach, sentiment classification of Arabic documents (SCArD), combines the advantages of a clustering-based undersampling (CBUS) method and an ensemble learning model to aid machine learning (ML) classifiers in building accurate models against highly imbalanced datasets. The CBUS method applies two standard clustering algorithms: K-means and expectation–maximization, to balance the ratio between the major and the minor classes by decreasing the number of the major class instances and maintaining the number of the minor class instances at the cluster level. The merits of the proposed approach are that it does not remove the majority class instances from the dataset nor injects the dataset with artificial minority class instances. The resulting balanced datasets are used to train two ML classifiers, random forest and updateable Naïve Bayes, to develop prediction data models. The best prediction data models are selected based on F1-score rates. We applied two techniques to test SCArD and generate new predictions from the imbalanced test dataset. The first technique uses the best prediction data models. The second technique uses the majority voting ensemble learning model, which combines the best prediction data models to generate the final predictions. The experimental results showed that SCArD is promising and outperformed the other comparative classification models based on the F1-score rates.","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cluster-based ensemble learning model for improving sentiment classification of Arabic documents\",\"authors\":\"Rana Husni Al Mahmoud, B. Hammo, Hossam Faris\",\"doi\":\"10.1017/s135132492300027x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This article reports on designing and implementing a multiclass sentiment classification approach to handle the imbalanced class distribution of Arabic documents. The proposed approach, sentiment classification of Arabic documents (SCArD), combines the advantages of a clustering-based undersampling (CBUS) method and an ensemble learning model to aid machine learning (ML) classifiers in building accurate models against highly imbalanced datasets. The CBUS method applies two standard clustering algorithms: K-means and expectation–maximization, to balance the ratio between the major and the minor classes by decreasing the number of the major class instances and maintaining the number of the minor class instances at the cluster level. The merits of the proposed approach are that it does not remove the majority class instances from the dataset nor injects the dataset with artificial minority class instances. The resulting balanced datasets are used to train two ML classifiers, random forest and updateable Naïve Bayes, to develop prediction data models. The best prediction data models are selected based on F1-score rates. We applied two techniques to test SCArD and generate new predictions from the imbalanced test dataset. The first technique uses the best prediction data models. The second technique uses the majority voting ensemble learning model, which combines the best prediction data models to generate the final predictions. The experimental results showed that SCArD is promising and outperformed the other comparative classification models based on the F1-score rates.\",\"PeriodicalId\":49143,\"journal\":{\"name\":\"Natural Language Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s135132492300027x\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s135132492300027x","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文设计并实现了一种多类情感分类方法来处理阿拉伯文文档的不平衡类分布。本文提出的阿拉伯语文档情感分类(SCArD)方法结合了基于聚类的欠采样(CBUS)方法和集成学习模型的优点,以帮助机器学习(ML)分类器针对高度不平衡的数据集建立准确的模型。CBUS方法采用K-means和期望最大化两种标准聚类算法,通过减少主要类实例的数量和保持次要类实例的数量来平衡主要类和次要类之间的比例。该方法的优点是既不会从数据集中删除多数类实例,也不会在数据集中注入人为的少数类实例。得到的平衡数据集用于训练两个ML分类器,随机森林和可更新的Naïve贝叶斯,以开发预测数据模型。根据f1得分率选择最佳预测数据模型。我们应用了两种技术来测试SCArD,并从不平衡测试数据集生成新的预测。第一种技术使用最好的预测数据模型。第二种技术使用多数投票集成学习模型,它结合了最好的预测数据模型来生成最终的预测。实验结果表明,SCArD具有较好的应用前景,并且优于其他基于f1得分率的比较分类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cluster-based ensemble learning model for improving sentiment classification of Arabic documents
This article reports on designing and implementing a multiclass sentiment classification approach to handle the imbalanced class distribution of Arabic documents. The proposed approach, sentiment classification of Arabic documents (SCArD), combines the advantages of a clustering-based undersampling (CBUS) method and an ensemble learning model to aid machine learning (ML) classifiers in building accurate models against highly imbalanced datasets. The CBUS method applies two standard clustering algorithms: K-means and expectation–maximization, to balance the ratio between the major and the minor classes by decreasing the number of the major class instances and maintaining the number of the minor class instances at the cluster level. The merits of the proposed approach are that it does not remove the majority class instances from the dataset nor injects the dataset with artificial minority class instances. The resulting balanced datasets are used to train two ML classifiers, random forest and updateable Naïve Bayes, to develop prediction data models. The best prediction data models are selected based on F1-score rates. We applied two techniques to test SCArD and generate new predictions from the imbalanced test dataset. The first technique uses the best prediction data models. The second technique uses the majority voting ensemble learning model, which combines the best prediction data models to generate the final predictions. The experimental results showed that SCArD is promising and outperformed the other comparative classification models based on the F1-score rates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Natural Language Engineering
Natural Language Engineering COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
12.00%
发文量
60
审稿时长
>12 weeks
期刊介绍: Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.
期刊最新文献
Start-up activity in the LLM ecosystem Anisotropic span embeddings and the negative impact of higher-order inference for coreference resolution: An empirical analysis Automated annotation of parallel bible corpora with cross-lingual semantic concordance How do control tokens affect natural language generation tasks like text simplification Emerging trends: When can users trust GPT, and when should they intervene?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1