M. Kodama , A. Takeuchi , M. Uesugi , T. Miyuki , H. Yasuda , S. Hirai
{"title":"全固态锂离子电池纳米孔径的超小角x射线散射(USAXS)测量","authors":"M. Kodama , A. Takeuchi , M. Uesugi , T. Miyuki , H. Yasuda , S. Hirai","doi":"10.1016/j.powera.2021.100076","DOIUrl":null,"url":null,"abstract":"<div><p>In a high performance all-solid-state lithium-ion battery (ASSLiB), lithium-ion should be smoothly transported to minimize overpotential. Nanoscale pores in the ASSLiB can inhibit ionic transportation; therefore, the pore structure should be measured and nanoscale pores should be prevented for high performance batteries. In this study, laboratory-scale ultra-small-angle X-ray scattering (USAXS) measurements are proposed to evaluate the nanoscale pores in ASSLiBs. The results measured with the USAXS are validated by comparing them with synchrotron radiation (SR) X-ray nanotomography data. The pore volumetric density distributions from the USAXS measurements are very close to those from SR X-ray nanotomography; this demonstrates that the nanoscale pores in ASSLiBs can be measured by USAXS. USAXS measurements of pore structures of solid electrolytes prepared from micron-scale and submicron-scale particles solid electrolyte (SE) reveal that the pore structure is not simply dependent on the SE particle size.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"12 ","pages":"Article 100076"},"PeriodicalIF":5.4000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248521000317/pdfft?md5=3e6b1c633cfcc38eaf14f0880708723e&pid=1-s2.0-S2666248521000317-main.pdf","citationCount":"2","resultStr":"{\"title\":\"Nanoscale pore measurements in an all-solid-state lithium-ion battery with ultra-small-angle X-ray scattering (USAXS)\",\"authors\":\"M. Kodama , A. Takeuchi , M. Uesugi , T. Miyuki , H. Yasuda , S. Hirai\",\"doi\":\"10.1016/j.powera.2021.100076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In a high performance all-solid-state lithium-ion battery (ASSLiB), lithium-ion should be smoothly transported to minimize overpotential. Nanoscale pores in the ASSLiB can inhibit ionic transportation; therefore, the pore structure should be measured and nanoscale pores should be prevented for high performance batteries. In this study, laboratory-scale ultra-small-angle X-ray scattering (USAXS) measurements are proposed to evaluate the nanoscale pores in ASSLiBs. The results measured with the USAXS are validated by comparing them with synchrotron radiation (SR) X-ray nanotomography data. The pore volumetric density distributions from the USAXS measurements are very close to those from SR X-ray nanotomography; this demonstrates that the nanoscale pores in ASSLiBs can be measured by USAXS. USAXS measurements of pore structures of solid electrolytes prepared from micron-scale and submicron-scale particles solid electrolyte (SE) reveal that the pore structure is not simply dependent on the SE particle size.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"12 \",\"pages\":\"Article 100076\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248521000317/pdfft?md5=3e6b1c633cfcc38eaf14f0880708723e&pid=1-s2.0-S2666248521000317-main.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248521000317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248521000317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Nanoscale pore measurements in an all-solid-state lithium-ion battery with ultra-small-angle X-ray scattering (USAXS)
In a high performance all-solid-state lithium-ion battery (ASSLiB), lithium-ion should be smoothly transported to minimize overpotential. Nanoscale pores in the ASSLiB can inhibit ionic transportation; therefore, the pore structure should be measured and nanoscale pores should be prevented for high performance batteries. In this study, laboratory-scale ultra-small-angle X-ray scattering (USAXS) measurements are proposed to evaluate the nanoscale pores in ASSLiBs. The results measured with the USAXS are validated by comparing them with synchrotron radiation (SR) X-ray nanotomography data. The pore volumetric density distributions from the USAXS measurements are very close to those from SR X-ray nanotomography; this demonstrates that the nanoscale pores in ASSLiBs can be measured by USAXS. USAXS measurements of pore structures of solid electrolytes prepared from micron-scale and submicron-scale particles solid electrolyte (SE) reveal that the pore structure is not simply dependent on the SE particle size.