{"title":"x射线吸收光谱显微镜可以在阳极-电解质界面处获得Li1+xAlxGe2−x(PO4)3 (LAGP)的局部降解","authors":"Majid Kazemian , Maya Kiskinova , Benedetto Bozzini","doi":"10.1016/j.powera.2022.100106","DOIUrl":null,"url":null,"abstract":"<div><p>Batteries with inorganic solid-state electrolytes (ISSE) are attracting notable interest for next-generation systems implementing Lithium (Li) metal anodes, in view of achieving higher energy densities combined with superior safety. Notwithstanding extensive research and development work, this technology is not yet ready for industrial implementation, one of the key challenges being the stability of ISSEs, chiefly at the anodic interface. This work attacks this issue for the specific case of the LAGP/Li (Lithium Aluminium Germanium Phosphate/Lithium) interface with a micro-spectroscopic approach centred on <em>post mortem</em> Scanning Transmission X-ray Microscopy (STXM) of intact LMO/LAGP/Li thin-film batteries, microfabricated in discharged state. Pristine and cycled cells were mapped to pinpoint morphochemical changes, induced by electrochemical ageing. The evidenced shape changes, corresponding to mechanical damaging of the solid/solid electrodic interfaces correlate with LAGP decomposition at the anode, leading to reduction of Ge, whereas the chemical state at the cathodic interface is preserved. Thanks to its submicron spacial resolution, the STXM at the Ge L-edge and O K-edge spectra allowed to assess the highly localized nature of the chemical transformation of LAGP and its correlation with the formation of Li outgrowth features.</p></div>","PeriodicalId":34318,"journal":{"name":"Journal of Power Sources Advances","volume":"17 ","pages":"Article 100106"},"PeriodicalIF":5.4000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666248522000245/pdfft?md5=d3c27cf428d85d9d5a4df5b0021104c7&pid=1-s2.0-S2666248522000245-main.pdf","citationCount":"1","resultStr":"{\"title\":\"X-ray absorption spectromicroscopy gives access to Li1+xAlxGe2−x(PO4)3 (LAGP) local degradation at the anode-electrolyte interface\",\"authors\":\"Majid Kazemian , Maya Kiskinova , Benedetto Bozzini\",\"doi\":\"10.1016/j.powera.2022.100106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Batteries with inorganic solid-state electrolytes (ISSE) are attracting notable interest for next-generation systems implementing Lithium (Li) metal anodes, in view of achieving higher energy densities combined with superior safety. Notwithstanding extensive research and development work, this technology is not yet ready for industrial implementation, one of the key challenges being the stability of ISSEs, chiefly at the anodic interface. This work attacks this issue for the specific case of the LAGP/Li (Lithium Aluminium Germanium Phosphate/Lithium) interface with a micro-spectroscopic approach centred on <em>post mortem</em> Scanning Transmission X-ray Microscopy (STXM) of intact LMO/LAGP/Li thin-film batteries, microfabricated in discharged state. Pristine and cycled cells were mapped to pinpoint morphochemical changes, induced by electrochemical ageing. The evidenced shape changes, corresponding to mechanical damaging of the solid/solid electrodic interfaces correlate with LAGP decomposition at the anode, leading to reduction of Ge, whereas the chemical state at the cathodic interface is preserved. Thanks to its submicron spacial resolution, the STXM at the Ge L-edge and O K-edge spectra allowed to assess the highly localized nature of the chemical transformation of LAGP and its correlation with the formation of Li outgrowth features.</p></div>\",\"PeriodicalId\":34318,\"journal\":{\"name\":\"Journal of Power Sources Advances\",\"volume\":\"17 \",\"pages\":\"Article 100106\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666248522000245/pdfft?md5=d3c27cf428d85d9d5a4df5b0021104c7&pid=1-s2.0-S2666248522000245-main.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666248522000245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666248522000245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
X-ray absorption spectromicroscopy gives access to Li1+xAlxGe2−x(PO4)3 (LAGP) local degradation at the anode-electrolyte interface
Batteries with inorganic solid-state electrolytes (ISSE) are attracting notable interest for next-generation systems implementing Lithium (Li) metal anodes, in view of achieving higher energy densities combined with superior safety. Notwithstanding extensive research and development work, this technology is not yet ready for industrial implementation, one of the key challenges being the stability of ISSEs, chiefly at the anodic interface. This work attacks this issue for the specific case of the LAGP/Li (Lithium Aluminium Germanium Phosphate/Lithium) interface with a micro-spectroscopic approach centred on post mortem Scanning Transmission X-ray Microscopy (STXM) of intact LMO/LAGP/Li thin-film batteries, microfabricated in discharged state. Pristine and cycled cells were mapped to pinpoint morphochemical changes, induced by electrochemical ageing. The evidenced shape changes, corresponding to mechanical damaging of the solid/solid electrodic interfaces correlate with LAGP decomposition at the anode, leading to reduction of Ge, whereas the chemical state at the cathodic interface is preserved. Thanks to its submicron spacial resolution, the STXM at the Ge L-edge and O K-edge spectra allowed to assess the highly localized nature of the chemical transformation of LAGP and its correlation with the formation of Li outgrowth features.