{"title":"红粉甲虫(Tribolium castaneum,鞘翅目:拟甲科)的小颗粒和管状体有助于Toll通路依赖性抗菌肽的产生。","authors":"K. Yokoi, Daiki Kato, K. Miura","doi":"10.14411/eje.2022.012","DOIUrl":null,"url":null,"abstract":"Insects are solely dependent on an innate immune system. Antimicrobial peptide production is the main immune response of insects. The molecular mechanisms underlying this reaction in Drosophila melanogaster involves the induction of antimicrobial peptide genes, which is regulated by the Toll and IMD pathways. The Toll pathway is mainly activated by fungi or Gram-positive bacteria and the IMD pathway by Gram-negative bacteria. In terms of comparative immunology, we investigated the antimicrobial peptide production system in the beetle, Tribolium castaneum, which differs from that in D. melanogaster. To obtain a more detailed understanding, we examined whether Pelle and Tube, orthologues of which in D. melanogaster are the Toll pathway components, contributed to antimicrobial peptide production and immune reactions. These two genes were not induced by challenges from any type of microbe, which in this case were Gram-positive bacteria, -negative bacteria and an eukaryote. Using Pelle and Tube knockdown pupae, it was demonstrated that Pelle and Tube are involved in the induction of Cec2 as a representative Toll pathway-dependent gene in T. castaneum by Gram-positive and -negative bacteria and eukaryote challenges. Furthermore, neither Pelle nor Tube contributed to immune defences against two entomopathogenic bacteria. These results, taken together with our previous fi ndings, led to the conclusion that the Toll pathway immune signaling reported in D. melanogaster indeed occurs in T. castaneum, and the gene sets involved in Toll signal transduction in T. castaneum did not differ signifi cantly from those in D. melanogaster, but transduced immune signals to challenges from Gram-positive bacteria, -negative bacteria and an eukaryote, which differed from those in D. melanogaster.","PeriodicalId":11940,"journal":{"name":"European Journal of Entomology","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Pelle and Tube contribute to the Toll pathway-dependent antimicrobial peptide production in the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae)\",\"authors\":\"K. Yokoi, Daiki Kato, K. Miura\",\"doi\":\"10.14411/eje.2022.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Insects are solely dependent on an innate immune system. Antimicrobial peptide production is the main immune response of insects. The molecular mechanisms underlying this reaction in Drosophila melanogaster involves the induction of antimicrobial peptide genes, which is regulated by the Toll and IMD pathways. The Toll pathway is mainly activated by fungi or Gram-positive bacteria and the IMD pathway by Gram-negative bacteria. In terms of comparative immunology, we investigated the antimicrobial peptide production system in the beetle, Tribolium castaneum, which differs from that in D. melanogaster. To obtain a more detailed understanding, we examined whether Pelle and Tube, orthologues of which in D. melanogaster are the Toll pathway components, contributed to antimicrobial peptide production and immune reactions. These two genes were not induced by challenges from any type of microbe, which in this case were Gram-positive bacteria, -negative bacteria and an eukaryote. Using Pelle and Tube knockdown pupae, it was demonstrated that Pelle and Tube are involved in the induction of Cec2 as a representative Toll pathway-dependent gene in T. castaneum by Gram-positive and -negative bacteria and eukaryote challenges. Furthermore, neither Pelle nor Tube contributed to immune defences against two entomopathogenic bacteria. These results, taken together with our previous fi ndings, led to the conclusion that the Toll pathway immune signaling reported in D. melanogaster indeed occurs in T. castaneum, and the gene sets involved in Toll signal transduction in T. castaneum did not differ signifi cantly from those in D. melanogaster, but transduced immune signals to challenges from Gram-positive bacteria, -negative bacteria and an eukaryote, which differed from those in D. melanogaster.\",\"PeriodicalId\":11940,\"journal\":{\"name\":\"European Journal of Entomology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Entomology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.14411/eje.2022.012\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.14411/eje.2022.012","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Pelle and Tube contribute to the Toll pathway-dependent antimicrobial peptide production in the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae)
Insects are solely dependent on an innate immune system. Antimicrobial peptide production is the main immune response of insects. The molecular mechanisms underlying this reaction in Drosophila melanogaster involves the induction of antimicrobial peptide genes, which is regulated by the Toll and IMD pathways. The Toll pathway is mainly activated by fungi or Gram-positive bacteria and the IMD pathway by Gram-negative bacteria. In terms of comparative immunology, we investigated the antimicrobial peptide production system in the beetle, Tribolium castaneum, which differs from that in D. melanogaster. To obtain a more detailed understanding, we examined whether Pelle and Tube, orthologues of which in D. melanogaster are the Toll pathway components, contributed to antimicrobial peptide production and immune reactions. These two genes were not induced by challenges from any type of microbe, which in this case were Gram-positive bacteria, -negative bacteria and an eukaryote. Using Pelle and Tube knockdown pupae, it was demonstrated that Pelle and Tube are involved in the induction of Cec2 as a representative Toll pathway-dependent gene in T. castaneum by Gram-positive and -negative bacteria and eukaryote challenges. Furthermore, neither Pelle nor Tube contributed to immune defences against two entomopathogenic bacteria. These results, taken together with our previous fi ndings, led to the conclusion that the Toll pathway immune signaling reported in D. melanogaster indeed occurs in T. castaneum, and the gene sets involved in Toll signal transduction in T. castaneum did not differ signifi cantly from those in D. melanogaster, but transduced immune signals to challenges from Gram-positive bacteria, -negative bacteria and an eukaryote, which differed from those in D. melanogaster.
期刊介绍:
EJE publishes original articles, reviews and points of view on all aspects of entomology. There are no restrictions on geographic region or taxon (Myriapoda, Chelicerata and terrestrial Crustacea included). Comprehensive studies and comparative/experimental approaches are preferred and the following types of manuscripts will usually be declined:
- Descriptive alpha-taxonomic studies unless the paper is markedly comprehensive/revisional taxonomically or regionally, and/or significantly improves our knowledge of comparative morphology, relationships or biogeography of the higher taxon concerned;
- Other purely or predominantly descriptive or enumerative papers [such as (ultra)structural and functional details, life tables, host records, distributional records and faunistic surveys, compiled checklists, etc.] unless they are exceptionally comprehensive or concern data or taxa of particular entomological (e.g., phylogenetic) interest;
- Papers evaluating the effect of chemicals (including pesticides, plant extracts, attractants or repellents, etc.), irradiation, pathogens, or dealing with other data of predominantly agro-economic impact without general entomological relevance.