Wenqiang Zhang, Jingzhuo Zhou, Yanwen Jia, Juzheng Chen, Yiru Pu, Rong Fan, Fanling Meng, Qi Ge, Yang Lu
{"title":"具有高可调刚度和快速响应速率的磁活性微晶格超材料","authors":"Wenqiang Zhang, Jingzhuo Zhou, Yanwen Jia, Juzheng Chen, Yiru Pu, Rong Fan, Fanling Meng, Qi Ge, Yang Lu","doi":"10.1038/s41427-023-00492-x","DOIUrl":null,"url":null,"abstract":"Active metamaterials with shapes or mechanical properties that can be controlled remotely are promising candidates for soft robots, flexible electronics, and medical applications. However, current active metamaterials often have long response times and short ranges of linear working strains. Here, we demonstrate magnetoactive microlattice metamaterials constructed from 3D-printed, ultra-flexible polymer shells filled with magnetorheological (MR) fluid. Under compressive stress, the magnetorheological fluid develops hydrostatic pressure, allowing for a linear compression strain of more than 30% without buckling. We further show that under a relatively low magnetic field strength (approximately 60 mT), the microlattices can become approximately 200% stiffer than those in a relaxed state, and the energy absorption increases ~16 times. Furthermore, our microlattices showed an ultra-low response time with “field on” and “field off” times of ~200 ms and ~50 ms, respectively. The ability to continuously tune the mechanical properties of these materials in real time make it possible to modulate stress‒strain behavior on demand. Our study provides a new route toward large-scale, highly tunable, and remotely controllable metamaterials with potential applications in wearable exoskeletons, tactile sensors, and medical supports. A liquid–solid dual-phase magnetoactive microlattice metamaterial composed of flexible 3D-printed polymer shell and magnetorheological (MR) fluid has been designed and fabricated. The MR fluid-filled magnetoactive microlattices demonstrated remarkable recoverability (~50%) and be substantially stiffened in the presence of a magnetic field, with an ~200% increment in stiffness at 60 mT. Based on specific applications, the mechanical properties of this magnetoactive microlattice metamaterial can be modulated on demand, leading to certain programmable stress-strain behavior.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"15 1","pages":"1-8"},"PeriodicalIF":8.6000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-023-00492-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Magnetoactive microlattice metamaterials with highly tunable stiffness and fast response rate\",\"authors\":\"Wenqiang Zhang, Jingzhuo Zhou, Yanwen Jia, Juzheng Chen, Yiru Pu, Rong Fan, Fanling Meng, Qi Ge, Yang Lu\",\"doi\":\"10.1038/s41427-023-00492-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active metamaterials with shapes or mechanical properties that can be controlled remotely are promising candidates for soft robots, flexible electronics, and medical applications. However, current active metamaterials often have long response times and short ranges of linear working strains. Here, we demonstrate magnetoactive microlattice metamaterials constructed from 3D-printed, ultra-flexible polymer shells filled with magnetorheological (MR) fluid. Under compressive stress, the magnetorheological fluid develops hydrostatic pressure, allowing for a linear compression strain of more than 30% without buckling. We further show that under a relatively low magnetic field strength (approximately 60 mT), the microlattices can become approximately 200% stiffer than those in a relaxed state, and the energy absorption increases ~16 times. Furthermore, our microlattices showed an ultra-low response time with “field on” and “field off” times of ~200 ms and ~50 ms, respectively. The ability to continuously tune the mechanical properties of these materials in real time make it possible to modulate stress‒strain behavior on demand. Our study provides a new route toward large-scale, highly tunable, and remotely controllable metamaterials with potential applications in wearable exoskeletons, tactile sensors, and medical supports. A liquid–solid dual-phase magnetoactive microlattice metamaterial composed of flexible 3D-printed polymer shell and magnetorheological (MR) fluid has been designed and fabricated. The MR fluid-filled magnetoactive microlattices demonstrated remarkable recoverability (~50%) and be substantially stiffened in the presence of a magnetic field, with an ~200% increment in stiffness at 60 mT. Based on specific applications, the mechanical properties of this magnetoactive microlattice metamaterial can be modulated on demand, leading to certain programmable stress-strain behavior.\",\"PeriodicalId\":19382,\"journal\":{\"name\":\"Npg Asia Materials\",\"volume\":\"15 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41427-023-00492-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Npg Asia Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41427-023-00492-x\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-023-00492-x","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Magnetoactive microlattice metamaterials with highly tunable stiffness and fast response rate
Active metamaterials with shapes or mechanical properties that can be controlled remotely are promising candidates for soft robots, flexible electronics, and medical applications. However, current active metamaterials often have long response times and short ranges of linear working strains. Here, we demonstrate magnetoactive microlattice metamaterials constructed from 3D-printed, ultra-flexible polymer shells filled with magnetorheological (MR) fluid. Under compressive stress, the magnetorheological fluid develops hydrostatic pressure, allowing for a linear compression strain of more than 30% without buckling. We further show that under a relatively low magnetic field strength (approximately 60 mT), the microlattices can become approximately 200% stiffer than those in a relaxed state, and the energy absorption increases ~16 times. Furthermore, our microlattices showed an ultra-low response time with “field on” and “field off” times of ~200 ms and ~50 ms, respectively. The ability to continuously tune the mechanical properties of these materials in real time make it possible to modulate stress‒strain behavior on demand. Our study provides a new route toward large-scale, highly tunable, and remotely controllable metamaterials with potential applications in wearable exoskeletons, tactile sensors, and medical supports. A liquid–solid dual-phase magnetoactive microlattice metamaterial composed of flexible 3D-printed polymer shell and magnetorheological (MR) fluid has been designed and fabricated. The MR fluid-filled magnetoactive microlattices demonstrated remarkable recoverability (~50%) and be substantially stiffened in the presence of a magnetic field, with an ~200% increment in stiffness at 60 mT. Based on specific applications, the mechanical properties of this magnetoactive microlattice metamaterial can be modulated on demand, leading to certain programmable stress-strain behavior.
期刊介绍:
NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.