egs++:模拟传输参数的优化

S. Yani
{"title":"egs++:模拟传输参数的优化","authors":"S. Yani","doi":"10.25077/jif.15.1.66-72.2023","DOIUrl":null,"url":null,"abstract":"MC transport parameters used are common to all egs++ applications. The effect of each transport parameter need to understand to optimize the simulation process. Therefore, the purpose of this study was to investigate the efficiency of egs++ simulation for different transport parameters in water phantom. This water phantom has built using slab. Collimated source defined 100 cm above the phantom. The simulation parameters such as the efficiency, statistical uncertainty, and accuracy of selecting transport parameters such as electron and photon cut-off energies, spin effects, atomic relaxations, and bound Compton scattering was investigated. The selection of ECUT and PCUT greatly affects the simulation time. The simulation time, efficiency and energy fractions have same value for varied ECUT except for 0.521 MeV. The energy fraction have been shifted but the simulation time and efficiency were same. Turning on spin effects in this simulation increases simulation time by 25%. The simulation time increases by about 15% when relaxations are turned on. The more accurate result of deposited energy using EGSnrc algorithm is about 30% slower than the less accurate PRESTA-I algorithm. Therefore, The optimization of transport parameters is needed in the simulation of egs++ to provide the best efficiency.","PeriodicalId":52720,"journal":{"name":"JIF Jurnal Ilmu Fisika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"egs++: Optimization of Simulation Transport Parameters\",\"authors\":\"S. Yani\",\"doi\":\"10.25077/jif.15.1.66-72.2023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MC transport parameters used are common to all egs++ applications. The effect of each transport parameter need to understand to optimize the simulation process. Therefore, the purpose of this study was to investigate the efficiency of egs++ simulation for different transport parameters in water phantom. This water phantom has built using slab. Collimated source defined 100 cm above the phantom. The simulation parameters such as the efficiency, statistical uncertainty, and accuracy of selecting transport parameters such as electron and photon cut-off energies, spin effects, atomic relaxations, and bound Compton scattering was investigated. The selection of ECUT and PCUT greatly affects the simulation time. The simulation time, efficiency and energy fractions have same value for varied ECUT except for 0.521 MeV. The energy fraction have been shifted but the simulation time and efficiency were same. Turning on spin effects in this simulation increases simulation time by 25%. The simulation time increases by about 15% when relaxations are turned on. The more accurate result of deposited energy using EGSnrc algorithm is about 30% slower than the less accurate PRESTA-I algorithm. Therefore, The optimization of transport parameters is needed in the simulation of egs++ to provide the best efficiency.\",\"PeriodicalId\":52720,\"journal\":{\"name\":\"JIF Jurnal Ilmu Fisika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIF Jurnal Ilmu Fisika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.25077/jif.15.1.66-72.2023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIF Jurnal Ilmu Fisika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25077/jif.15.1.66-72.2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用的MC传输参数对所有的egg++应用程序都是通用的。需要了解各个传输参数的影响,以优化仿真过程。因此,本研究的目的是研究egs++模拟在水幻影中不同传输参数下的效率。这个水幻影是用平板建造的。准直光源定义在幻影上方100厘米处。研究了电子和光子截止能、自旋效应、原子弛豫和束缚康普顿散射等输运参数选择的效率、统计不确定性和精度等模拟参数。ECUT和PCUT的选择对仿真时间影响很大。除0.521 MeV外,不同ECUT的模拟时间、效率和能量分数值基本相同。在模拟时间和效率不变的情况下,能量分数发生了变化。在这个模拟中打开旋转效果会增加25%的模拟时间。当打开松弛时,模拟时间增加约15%。相比精度较低的PRESTA-I算法,EGSnrc算法的沉积能量计算精度较高,但计算速度要慢30%左右。因此,在egs++仿真中需要对输运参数进行优化,以提供最佳的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
egs++: Optimization of Simulation Transport Parameters
MC transport parameters used are common to all egs++ applications. The effect of each transport parameter need to understand to optimize the simulation process. Therefore, the purpose of this study was to investigate the efficiency of egs++ simulation for different transport parameters in water phantom. This water phantom has built using slab. Collimated source defined 100 cm above the phantom. The simulation parameters such as the efficiency, statistical uncertainty, and accuracy of selecting transport parameters such as electron and photon cut-off energies, spin effects, atomic relaxations, and bound Compton scattering was investigated. The selection of ECUT and PCUT greatly affects the simulation time. The simulation time, efficiency and energy fractions have same value for varied ECUT except for 0.521 MeV. The energy fraction have been shifted but the simulation time and efficiency were same. Turning on spin effects in this simulation increases simulation time by 25%. The simulation time increases by about 15% when relaxations are turned on. The more accurate result of deposited energy using EGSnrc algorithm is about 30% slower than the less accurate PRESTA-I algorithm. Therefore, The optimization of transport parameters is needed in the simulation of egs++ to provide the best efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
7
审稿时长
6 weeks
期刊最新文献
Development of River Flow and Water Quality Using IOT-based Smart Buoys Environment Monitoring System Particle Size Improvement and Layer Absorption of Metil Halida MAPbI3 Perovskite Doping Phenethylammonium Iodide (PEAI) Efficiency at Maximum Power of Endoreversible Quantum Otto Engine with Partial Thermalization in 3D Harmonic Potential Wind Gust Parameterization Assessment under Convective and Non-convective Events: A Case Study at the Kertajati International Airport An Analysis of the Schrodinger Equation Model for the Distribution Rate of Stock Returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1