高速电解镀铜柱的优化,以实现平顶形貌和高度均匀性

Ikumoto Raihei, Itakura Yuki, S. Tachibana, Hisamitsu Yamamoto
{"title":"高速电解镀铜柱的优化,以实现平顶形貌和高度均匀性","authors":"Ikumoto Raihei, Itakura Yuki, S. Tachibana, Hisamitsu Yamamoto","doi":"10.4071/2380-4505-2020.1.000150","DOIUrl":null,"url":null,"abstract":"\n Cu plating bath for high-speed electrodeposition of Cu pillar was designed in consideration of a flat top morphology of pillar and a pillar height uniformity. An ideal polarization curve was assumed for the flat top morphology. To obtain the ideal polarization curve, an effect of organic additive concentration and solution agitation on the polarization curve were investigated. The basic bath components were optimized considering a Wagner number to improve the pillar height uniformity. To confirm the pillar top morphology and the pillar height uniformity, a 300-mm diameter wafer was plated with Cu at 20 A/dm2. As a result, improved pillar top morphology and pillar height uniformity were obtained. The optimized plating bath was applied to the plating of a large-size panel of 415 × 510 mm.","PeriodicalId":35312,"journal":{"name":"Journal of Microelectronics and Electronic Packaging","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of High-Speed Electrolytic Plating of Copper Pillar to Achieve a Flat Top Morphology and Height Uniformity\",\"authors\":\"Ikumoto Raihei, Itakura Yuki, S. Tachibana, Hisamitsu Yamamoto\",\"doi\":\"10.4071/2380-4505-2020.1.000150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cu plating bath for high-speed electrodeposition of Cu pillar was designed in consideration of a flat top morphology of pillar and a pillar height uniformity. An ideal polarization curve was assumed for the flat top morphology. To obtain the ideal polarization curve, an effect of organic additive concentration and solution agitation on the polarization curve were investigated. The basic bath components were optimized considering a Wagner number to improve the pillar height uniformity. To confirm the pillar top morphology and the pillar height uniformity, a 300-mm diameter wafer was plated with Cu at 20 A/dm2. As a result, improved pillar top morphology and pillar height uniformity were obtained. The optimized plating bath was applied to the plating of a large-size panel of 415 × 510 mm.\",\"PeriodicalId\":35312,\"journal\":{\"name\":\"Journal of Microelectronics and Electronic Packaging\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Microelectronics and Electronic Packaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4071/2380-4505-2020.1.000150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microelectronics and Electronic Packaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4071/2380-4505-2020.1.000150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

设计了高速电沉积铜柱的镀铜浴,考虑了铜柱的平顶形貌和高度均匀性。对平顶形貌假定了理想的极化曲线。为了得到理想的极化曲线,研究了有机添加剂浓度和溶液搅拌对极化曲线的影响。考虑瓦格纳数,优化了基本浴组件,提高了柱高均匀性。为了确定柱顶形貌和柱高均匀性,在直径为300 mm的晶圆上镀上20 a /dm2的Cu。改善了矿柱顶部形貌和矿柱高度均匀性。将优化后的镀液应用于415 × 510 mm大尺寸面板的电镀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of High-Speed Electrolytic Plating of Copper Pillar to Achieve a Flat Top Morphology and Height Uniformity
Cu plating bath for high-speed electrodeposition of Cu pillar was designed in consideration of a flat top morphology of pillar and a pillar height uniformity. An ideal polarization curve was assumed for the flat top morphology. To obtain the ideal polarization curve, an effect of organic additive concentration and solution agitation on the polarization curve were investigated. The basic bath components were optimized considering a Wagner number to improve the pillar height uniformity. To confirm the pillar top morphology and the pillar height uniformity, a 300-mm diameter wafer was plated with Cu at 20 A/dm2. As a result, improved pillar top morphology and pillar height uniformity were obtained. The optimized plating bath was applied to the plating of a large-size panel of 415 × 510 mm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Microelectronics and Electronic Packaging
Journal of Microelectronics and Electronic Packaging Engineering-Electrical and Electronic Engineering
CiteScore
1.30
自引率
0.00%
发文量
5
期刊介绍: The International Microelectronics And Packaging Society (IMAPS) is the largest society dedicated to the advancement and growth of microelectronics and electronics packaging technologies through professional education. The Society’s portfolio of technologies is disseminated through symposia, conferences, workshops, professional development courses and other efforts. IMAPS currently has more than 4,000 members in the United States and more than 4,000 international members around the world.
期刊最新文献
Study on the Manufacturability of X Dimension Fan Out Integration Package with Organic RDLs (XDFOI-O) AlGaN High Electron Mobility Transistor for High-Temperature Logic A Novel Approach for Characterizing Epoxy Mold Compound High Temperature Swelling Dual-Band Dual-Polarized Antennas for 5G mmWave Base Stations An Evaluation on the Mechanical and Conductive Performance of Electrically Conductive Film Adhesives with Glass Fabric Carriers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1