{"title":"利用表面增强拉曼光谱(SERS)进行生物化学遥感的微型光纤传感器","authors":"A. Pandya, J. Kumaradas, A. Douplik","doi":"10.18287/JBPE19.05.010301","DOIUrl":null,"url":null,"abstract":"In this study, we present facile fabrication of a miniaturized remote sensing SERS platform using highly tunable Nano-Sphere Lithography (NSL) technique. Using 200 μm diameter optical fibers with high numerical aperture (0.5NA), the SERS enhancement of remote sensing was found to be 98% of direct sensing configuration. Standard silica optical fibers were used for remote sensing using SERS without additional need of optical filtering to mitigate fluorescence and Raman background of these fibers which allows fabrication of miniaturized remote sensing platforms that can be used for remote biochemical sensing.","PeriodicalId":52398,"journal":{"name":"Journal of Biomedical Photonics and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Miniature optical fiber sensors using surface enhanced Raman spectroscopy (SERS) for remote biochemical sensing\",\"authors\":\"A. Pandya, J. Kumaradas, A. Douplik\",\"doi\":\"10.18287/JBPE19.05.010301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we present facile fabrication of a miniaturized remote sensing SERS platform using highly tunable Nano-Sphere Lithography (NSL) technique. Using 200 μm diameter optical fibers with high numerical aperture (0.5NA), the SERS enhancement of remote sensing was found to be 98% of direct sensing configuration. Standard silica optical fibers were used for remote sensing using SERS without additional need of optical filtering to mitigate fluorescence and Raman background of these fibers which allows fabrication of miniaturized remote sensing platforms that can be used for remote biochemical sensing.\",\"PeriodicalId\":52398,\"journal\":{\"name\":\"Journal of Biomedical Photonics and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Photonics and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/JBPE19.05.010301\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Photonics and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/JBPE19.05.010301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
Miniature optical fiber sensors using surface enhanced Raman spectroscopy (SERS) for remote biochemical sensing
In this study, we present facile fabrication of a miniaturized remote sensing SERS platform using highly tunable Nano-Sphere Lithography (NSL) technique. Using 200 μm diameter optical fibers with high numerical aperture (0.5NA), the SERS enhancement of remote sensing was found to be 98% of direct sensing configuration. Standard silica optical fibers were used for remote sensing using SERS without additional need of optical filtering to mitigate fluorescence and Raman background of these fibers which allows fabrication of miniaturized remote sensing platforms that can be used for remote biochemical sensing.