{"title":"基于正交实验的低温氮化硅工艺参数全局优化","authors":"Lian-Qiao Yang, Chi Zhang, Wen-Lei Li, Guo-He Liu, Majiaqi Wu, Jin-Qiang Liu, Jian-Hua Zhang","doi":"10.1007/s40436-022-00423-z","DOIUrl":null,"url":null,"abstract":"<div><p>Low-temperature silicon nitride (SiN<sub><i>x</i></sub>) films deposited by plasma-enhanced chemical vapor deposition (PECVD) have huge application potential in the flexible display. However, the applicability of SiN<sub><i>x</i></sub> largely depends on the film’s general properties, including flexibility, deposition rate, residual stress, elastic modulus, fracture strain, dielectric constant, refraction index, etc. Process optimization towards specific application by conventional experiment design needs lots of work due to the interaction of muti quality and process parameters. Therefore, an efficient global optimization approach for the process technology was proposed based on the Taguchi orthogonal experiment method considering muti-factor muti-responses. First of all, the Taguchi orthogonal experiment design and analysis was used to rank the influences of main process parameters on the quality characteristics, including radio frequency (RF) power, pressure, silane flow rate, ammonia flow rate and nitrogen flow rate. Then, the global optimization approach was carried out utilizing the multi-response optimizer considering the combination target of film formation rate, residual stress, dielectric constant, elastic modulus, fracture strain, refractive index. Finally, the optimal solution of the SiN<sub><i>x</i></sub> film was finally obtained and verified.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"11 2","pages":"181 - 190"},"PeriodicalIF":4.2000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40436-022-00423-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Global optimization of process parameters for low-temperature SiNx based on orthogonal experiments\",\"authors\":\"Lian-Qiao Yang, Chi Zhang, Wen-Lei Li, Guo-He Liu, Majiaqi Wu, Jin-Qiang Liu, Jian-Hua Zhang\",\"doi\":\"10.1007/s40436-022-00423-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Low-temperature silicon nitride (SiN<sub><i>x</i></sub>) films deposited by plasma-enhanced chemical vapor deposition (PECVD) have huge application potential in the flexible display. However, the applicability of SiN<sub><i>x</i></sub> largely depends on the film’s general properties, including flexibility, deposition rate, residual stress, elastic modulus, fracture strain, dielectric constant, refraction index, etc. Process optimization towards specific application by conventional experiment design needs lots of work due to the interaction of muti quality and process parameters. Therefore, an efficient global optimization approach for the process technology was proposed based on the Taguchi orthogonal experiment method considering muti-factor muti-responses. First of all, the Taguchi orthogonal experiment design and analysis was used to rank the influences of main process parameters on the quality characteristics, including radio frequency (RF) power, pressure, silane flow rate, ammonia flow rate and nitrogen flow rate. Then, the global optimization approach was carried out utilizing the multi-response optimizer considering the combination target of film formation rate, residual stress, dielectric constant, elastic modulus, fracture strain, refractive index. Finally, the optimal solution of the SiN<sub><i>x</i></sub> film was finally obtained and verified.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"11 2\",\"pages\":\"181 - 190\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40436-022-00423-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-022-00423-z\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-022-00423-z","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Global optimization of process parameters for low-temperature SiNx based on orthogonal experiments
Low-temperature silicon nitride (SiNx) films deposited by plasma-enhanced chemical vapor deposition (PECVD) have huge application potential in the flexible display. However, the applicability of SiNx largely depends on the film’s general properties, including flexibility, deposition rate, residual stress, elastic modulus, fracture strain, dielectric constant, refraction index, etc. Process optimization towards specific application by conventional experiment design needs lots of work due to the interaction of muti quality and process parameters. Therefore, an efficient global optimization approach for the process technology was proposed based on the Taguchi orthogonal experiment method considering muti-factor muti-responses. First of all, the Taguchi orthogonal experiment design and analysis was used to rank the influences of main process parameters on the quality characteristics, including radio frequency (RF) power, pressure, silane flow rate, ammonia flow rate and nitrogen flow rate. Then, the global optimization approach was carried out utilizing the multi-response optimizer considering the combination target of film formation rate, residual stress, dielectric constant, elastic modulus, fracture strain, refractive index. Finally, the optimal solution of the SiNx film was finally obtained and verified.
期刊介绍:
As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field.
All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.