Jing Lv, Yiqun Lin, Rui Zhang, Boyang Li, Hualin Yang
{"title":"基于马格纳斯效应的半潜船辅助推进装置","authors":"Jing Lv, Yiqun Lin, Rui Zhang, Boyang Li, Hualin Yang","doi":"10.2478/pomr-2022-0023","DOIUrl":null,"url":null,"abstract":"Abstract The purpose of this study is to explore the potentiality of wind propulsion on semi-submersible ships. A new type of Flettner rotor (two rotating cylinders) system installed on a semi-submersible ship is proposed. The structure and installation of two cylinders with a height of 20 m and a diameter of 14 m are introduced. The numerical simulation of the cylinder is carried out in Fluent software. The influence of apparent wind angle and spin ratio on the two cylinders are analysed, when the distance between two cylinders is 3D-13D (D is cylinder diameter). When the distance between two cylinders is 3D, the performance of the system increases with an increase in spin ratio. Moreover, the apparent wind angle also has an effect on the system performance. Specifically, the thrust contribution of the system at the apparent wind angle of 120° is the largest at the spin ratio of 3.0. The maximum thrust reaches 500 kN. When the spin ratio is 2.5 and the apparent wind angle is 120°, the maximum effective power of the system is 1734 kW. In addition, the influence of the two cylinders distance on system performance cannot be ignored. When the distance between the two cylinders is 7D and the spin ratio is 2.5, the effective power of the system reaches a maximum, which is 1932 kW.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assisted Propulsion Device of a Semi-Submersible Ship Based on the Magnus Effect\",\"authors\":\"Jing Lv, Yiqun Lin, Rui Zhang, Boyang Li, Hualin Yang\",\"doi\":\"10.2478/pomr-2022-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The purpose of this study is to explore the potentiality of wind propulsion on semi-submersible ships. A new type of Flettner rotor (two rotating cylinders) system installed on a semi-submersible ship is proposed. The structure and installation of two cylinders with a height of 20 m and a diameter of 14 m are introduced. The numerical simulation of the cylinder is carried out in Fluent software. The influence of apparent wind angle and spin ratio on the two cylinders are analysed, when the distance between two cylinders is 3D-13D (D is cylinder diameter). When the distance between two cylinders is 3D, the performance of the system increases with an increase in spin ratio. Moreover, the apparent wind angle also has an effect on the system performance. Specifically, the thrust contribution of the system at the apparent wind angle of 120° is the largest at the spin ratio of 3.0. The maximum thrust reaches 500 kN. When the spin ratio is 2.5 and the apparent wind angle is 120°, the maximum effective power of the system is 1734 kW. In addition, the influence of the two cylinders distance on system performance cannot be ignored. When the distance between the two cylinders is 7D and the spin ratio is 2.5, the effective power of the system reaches a maximum, which is 1932 kW.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2022-0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Assisted Propulsion Device of a Semi-Submersible Ship Based on the Magnus Effect
Abstract The purpose of this study is to explore the potentiality of wind propulsion on semi-submersible ships. A new type of Flettner rotor (two rotating cylinders) system installed on a semi-submersible ship is proposed. The structure and installation of two cylinders with a height of 20 m and a diameter of 14 m are introduced. The numerical simulation of the cylinder is carried out in Fluent software. The influence of apparent wind angle and spin ratio on the two cylinders are analysed, when the distance between two cylinders is 3D-13D (D is cylinder diameter). When the distance between two cylinders is 3D, the performance of the system increases with an increase in spin ratio. Moreover, the apparent wind angle also has an effect on the system performance. Specifically, the thrust contribution of the system at the apparent wind angle of 120° is the largest at the spin ratio of 3.0. The maximum thrust reaches 500 kN. When the spin ratio is 2.5 and the apparent wind angle is 120°, the maximum effective power of the system is 1734 kW. In addition, the influence of the two cylinders distance on system performance cannot be ignored. When the distance between the two cylinders is 7D and the spin ratio is 2.5, the effective power of the system reaches a maximum, which is 1932 kW.