空间钢-混凝土结构的进化拓扑优化

Yu Li, Y. Xie
{"title":"空间钢-混凝土结构的进化拓扑优化","authors":"Yu Li, Y. Xie","doi":"10.20898/j.iass.2021.015","DOIUrl":null,"url":null,"abstract":"Topology optimization techniques based on finite element analysis have been widely used in many fields, but most of the research and applications are based on single-material structures. Extended from the bi-directional evolutionary structural optimization (BESO) method, a new topology\n optimization technique for 3D structures made of multiple materials is presented in this paper. According to the sum of each element's principal stresses in the design domain, a material more suitable for this element would be assigned. Numerical examples of a steel- concrete cantilever, two\n different bridges and four floor systems are provided to demonstrate the effectiveness and practical value of the proposed method for the conceptual design of composite structures made of steel and concrete.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Evolutionary Topology Optimization of Spatial Steel-Concrete Structures\",\"authors\":\"Yu Li, Y. Xie\",\"doi\":\"10.20898/j.iass.2021.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topology optimization techniques based on finite element analysis have been widely used in many fields, but most of the research and applications are based on single-material structures. Extended from the bi-directional evolutionary structural optimization (BESO) method, a new topology\\n optimization technique for 3D structures made of multiple materials is presented in this paper. According to the sum of each element's principal stresses in the design domain, a material more suitable for this element would be assigned. Numerical examples of a steel- concrete cantilever, two\\n different bridges and four floor systems are provided to demonstrate the effectiveness and practical value of the proposed method for the conceptual design of composite structures made of steel and concrete.\",\"PeriodicalId\":42855,\"journal\":{\"name\":\"Journal of the International Association for Shell and Spatial Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the International Association for Shell and Spatial Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20898/j.iass.2021.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/j.iass.2021.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 6

摘要

基于有限元分析的拓扑优化技术在许多领域得到了广泛的应用,但大多数研究和应用都是基于单一材料结构。在双向进化结构优化(BESO)方法的基础上,提出了一种新的多材料三维结构拓扑优化技术。根据设计域中每个元件的主应力之和,将指定更适合该元件的材料。通过一个钢-混凝土悬臂梁、两种不同的桥梁和四层体系的算例,验证了该方法在钢-混凝土组合结构概念设计中的有效性和实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary Topology Optimization of Spatial Steel-Concrete Structures
Topology optimization techniques based on finite element analysis have been widely used in many fields, but most of the research and applications are based on single-material structures. Extended from the bi-directional evolutionary structural optimization (BESO) method, a new topology optimization technique for 3D structures made of multiple materials is presented in this paper. According to the sum of each element's principal stresses in the design domain, a material more suitable for this element would be assigned. Numerical examples of a steel- concrete cantilever, two different bridges and four floor systems are provided to demonstrate the effectiveness and practical value of the proposed method for the conceptual design of composite structures made of steel and concrete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
17
期刊介绍: The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.
期刊最新文献
Membrane Solution for a Paraboloid under Self-Weight An Initial-Morphogenesis Technique of Free-Form Shell Roofing Based on a Fourier Transform Seismic Design of Sports Arena for Tokyo Olympic 2020 Using Energy-Dissipation Devices Progressive Collapse Analysis of Single-Layer Latticed Domes With Fabricated Joints The Gridshells for the San Francisco Salesforce Transit Center
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1