A. Tadjeddine, Mohammed Sofiane Bendelhoum, R. I. Bendjillali, H. Hamiani, S. Djelaila
{"title":"使用PSS、MPPT和基于pso的技术将VRE与aFRR集成在PIAT网格中:一个案例研究","authors":"A. Tadjeddine, Mohammed Sofiane Bendelhoum, R. I. Bendjillali, H. Hamiani, S. Djelaila","doi":"10.4108/ew.3378","DOIUrl":null,"url":null,"abstract":"The Fluctuations in demand and weather conditions have a significant impact on the frequency and the voltage of Algeria's isolated PIAT power grid. To maintain stability and reliable power supply, it is crucial to keep these quantities close to their expected levels. An automatic (FRR) is employed to regulate real-time frequency deviations caused by integrating variable renewable energy (VRE), specifically wind and solar power in the Kabertene region. In order to mitigate wind power fluctuations, a power system stabilizer is implemented, which helps dampen oscillations. The use of Maximum Power Point Tracking (MPPT) techniques optimizes the extraction of power from solar panels under varying conditions. For efficient scheduling and dispatch of VRE generation, particle swarm optimization (PSO)-based algorithms are used. These algorithms ensure optimal utilization of renewable energy sources by considering their intermittent nature. This study proves the effectiveness of these techniques in enhancing grid stability, reducing frequency deviations, and improving VRE integration. Valuable insights are provided on their practical implementation, playing a crucial role in transitioning to a cleaner and more sustainable energy system.","PeriodicalId":53458,"journal":{"name":"EAI Endorsed Transactions on Energy Web","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"VRE Integrating in PIAT grid with aFRR using PSS, MPPT, and PSO-based Techniques: A Case Study Kabertene\",\"authors\":\"A. Tadjeddine, Mohammed Sofiane Bendelhoum, R. I. Bendjillali, H. Hamiani, S. Djelaila\",\"doi\":\"10.4108/ew.3378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Fluctuations in demand and weather conditions have a significant impact on the frequency and the voltage of Algeria's isolated PIAT power grid. To maintain stability and reliable power supply, it is crucial to keep these quantities close to their expected levels. An automatic (FRR) is employed to regulate real-time frequency deviations caused by integrating variable renewable energy (VRE), specifically wind and solar power in the Kabertene region. In order to mitigate wind power fluctuations, a power system stabilizer is implemented, which helps dampen oscillations. The use of Maximum Power Point Tracking (MPPT) techniques optimizes the extraction of power from solar panels under varying conditions. For efficient scheduling and dispatch of VRE generation, particle swarm optimization (PSO)-based algorithms are used. These algorithms ensure optimal utilization of renewable energy sources by considering their intermittent nature. This study proves the effectiveness of these techniques in enhancing grid stability, reducing frequency deviations, and improving VRE integration. Valuable insights are provided on their practical implementation, playing a crucial role in transitioning to a cleaner and more sustainable energy system.\",\"PeriodicalId\":53458,\"journal\":{\"name\":\"EAI Endorsed Transactions on Energy Web\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Energy Web\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/ew.3378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Energy Web","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/ew.3378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
VRE Integrating in PIAT grid with aFRR using PSS, MPPT, and PSO-based Techniques: A Case Study Kabertene
The Fluctuations in demand and weather conditions have a significant impact on the frequency and the voltage of Algeria's isolated PIAT power grid. To maintain stability and reliable power supply, it is crucial to keep these quantities close to their expected levels. An automatic (FRR) is employed to regulate real-time frequency deviations caused by integrating variable renewable energy (VRE), specifically wind and solar power in the Kabertene region. In order to mitigate wind power fluctuations, a power system stabilizer is implemented, which helps dampen oscillations. The use of Maximum Power Point Tracking (MPPT) techniques optimizes the extraction of power from solar panels under varying conditions. For efficient scheduling and dispatch of VRE generation, particle swarm optimization (PSO)-based algorithms are used. These algorithms ensure optimal utilization of renewable energy sources by considering their intermittent nature. This study proves the effectiveness of these techniques in enhancing grid stability, reducing frequency deviations, and improving VRE integration. Valuable insights are provided on their practical implementation, playing a crucial role in transitioning to a cleaner and more sustainable energy system.
期刊介绍:
With ICT pervading everyday objects and infrastructures, the ‘Future Internet’ is envisioned to undergo a radical transformation from how we know it today (a mere communication highway) into a vast hybrid network seamlessly integrating knowledge, people and machines into techno-social ecosystems whose behaviour transcends the boundaries of today’s engineering science. As the internet of things continues to grow, billions and trillions of data bytes need to be moved, stored and shared. The energy thus consumed and the climate impact of data centers are increasing dramatically, thereby becoming significant contributors to global warming and climate change. As reported recently, the combined electricity consumption of the world’s data centers has already exceeded that of some of the world''s top ten economies. In the ensuing process of integrating traditional and renewable energy, monitoring and managing various energy sources, and processing and transferring technological information through various channels, IT will undoubtedly play an ever-increasing and central role. Several technologies are currently racing to production to meet this challenge, from ‘smart dust’ to hybrid networks capable of controlling the emergence of dependable and reliable green and energy-efficient ecosystems – which we generically term the ‘energy web’ – calling for major paradigm shifts highly disruptive of the ways the energy sector functions today. The EAI Transactions on Energy Web are positioned at the forefront of these efforts and provide a forum for the most forward-looking, state-of-the-art research bringing together the cross section of IT and Energy communities. The journal will publish original works reporting on prominent advances that challenge traditional thinking.