{"title":"利用废弃绿藻衍生聚合物增强土壤水分管理:施用速率和混合深度的优化","authors":"Zijian He, Jiaping Liang, Yanwei Lu, Qiliang Yang, Chengmei Lu, Die Wu","doi":"10.3390/agronomy13092335","DOIUrl":null,"url":null,"abstract":"Water scarcity poses a formidable challenge to agricultural productivity in arid regions, and water retention agents offer promising potential in this regard. Therefore, this study proposes developing and preparing polymers with water retention properties using waste green algae as raw material to explore the effectiveness of enhanced water infiltration and reduce evaporation at different use levels (0%, 0.15%, 0.30%, 0.45% and 0.60%) and maximum mixing depths (10 cm, 20 cm, 30 cm, 40 cm and 50 cm) and determine the optimum management. The results demonstrate that the synthesized polymers exhibited a remarkable swelling rate of 143.6 g/g, along with reusability and excellent temperature stability. The polymer application rate was positively correlated with infiltration duration, with an increase from 161 min to 750 min as the application rate rose from 0% to 0.60%. Concurrently, cumulative infiltration increased from 22.6 cm to 31.1 cm, showcasing the benefits of the polymer in enhancing water retention. Intriguingly, cumulative evapotranspiration initially decreased and then increased with increasing polymer application rates. Moreover, increasing the maximum mixing depth from 10 to 50 cm while maintaining the 0.3% application rate increased the cumulative infiltration (from 22.6 cm to 31.1 cm) and infiltration rate (from 0.03 cm/min to 0.08 cm/min) while decreasing the cumulative evaporation (from 44.4 mm to 31.7 mm). Considering the cumulative infiltration, infiltration rate and evapotranspiration characteristics, an optimized polymer application rate of 0.27% at a mixing depth of 0–50 cm was recommended for efficient soil moisture management. This study highlights the potential of green algae-derived biodegradable polymers as a win–win strategy for achieving waste alleviation of water scarcity in drylands, particularly for maize and wheat cultivation in northern China.","PeriodicalId":56066,"journal":{"name":"Agronomy-Basel","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Soil Moisture Management Using Waste Green Algae-Derived Polymers: Optimization of Application Rate and Mixing Depth\",\"authors\":\"Zijian He, Jiaping Liang, Yanwei Lu, Qiliang Yang, Chengmei Lu, Die Wu\",\"doi\":\"10.3390/agronomy13092335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water scarcity poses a formidable challenge to agricultural productivity in arid regions, and water retention agents offer promising potential in this regard. Therefore, this study proposes developing and preparing polymers with water retention properties using waste green algae as raw material to explore the effectiveness of enhanced water infiltration and reduce evaporation at different use levels (0%, 0.15%, 0.30%, 0.45% and 0.60%) and maximum mixing depths (10 cm, 20 cm, 30 cm, 40 cm and 50 cm) and determine the optimum management. The results demonstrate that the synthesized polymers exhibited a remarkable swelling rate of 143.6 g/g, along with reusability and excellent temperature stability. The polymer application rate was positively correlated with infiltration duration, with an increase from 161 min to 750 min as the application rate rose from 0% to 0.60%. Concurrently, cumulative infiltration increased from 22.6 cm to 31.1 cm, showcasing the benefits of the polymer in enhancing water retention. Intriguingly, cumulative evapotranspiration initially decreased and then increased with increasing polymer application rates. Moreover, increasing the maximum mixing depth from 10 to 50 cm while maintaining the 0.3% application rate increased the cumulative infiltration (from 22.6 cm to 31.1 cm) and infiltration rate (from 0.03 cm/min to 0.08 cm/min) while decreasing the cumulative evaporation (from 44.4 mm to 31.7 mm). Considering the cumulative infiltration, infiltration rate and evapotranspiration characteristics, an optimized polymer application rate of 0.27% at a mixing depth of 0–50 cm was recommended for efficient soil moisture management. This study highlights the potential of green algae-derived biodegradable polymers as a win–win strategy for achieving waste alleviation of water scarcity in drylands, particularly for maize and wheat cultivation in northern China.\",\"PeriodicalId\":56066,\"journal\":{\"name\":\"Agronomy-Basel\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy-Basel\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/agronomy13092335\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy-Basel","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/agronomy13092335","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
Enhanced Soil Moisture Management Using Waste Green Algae-Derived Polymers: Optimization of Application Rate and Mixing Depth
Water scarcity poses a formidable challenge to agricultural productivity in arid regions, and water retention agents offer promising potential in this regard. Therefore, this study proposes developing and preparing polymers with water retention properties using waste green algae as raw material to explore the effectiveness of enhanced water infiltration and reduce evaporation at different use levels (0%, 0.15%, 0.30%, 0.45% and 0.60%) and maximum mixing depths (10 cm, 20 cm, 30 cm, 40 cm and 50 cm) and determine the optimum management. The results demonstrate that the synthesized polymers exhibited a remarkable swelling rate of 143.6 g/g, along with reusability and excellent temperature stability. The polymer application rate was positively correlated with infiltration duration, with an increase from 161 min to 750 min as the application rate rose from 0% to 0.60%. Concurrently, cumulative infiltration increased from 22.6 cm to 31.1 cm, showcasing the benefits of the polymer in enhancing water retention. Intriguingly, cumulative evapotranspiration initially decreased and then increased with increasing polymer application rates. Moreover, increasing the maximum mixing depth from 10 to 50 cm while maintaining the 0.3% application rate increased the cumulative infiltration (from 22.6 cm to 31.1 cm) and infiltration rate (from 0.03 cm/min to 0.08 cm/min) while decreasing the cumulative evaporation (from 44.4 mm to 31.7 mm). Considering the cumulative infiltration, infiltration rate and evapotranspiration characteristics, an optimized polymer application rate of 0.27% at a mixing depth of 0–50 cm was recommended for efficient soil moisture management. This study highlights the potential of green algae-derived biodegradable polymers as a win–win strategy for achieving waste alleviation of water scarcity in drylands, particularly for maize and wheat cultivation in northern China.
Agronomy-BaselAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
6.20
自引率
13.50%
发文量
2665
审稿时长
20.32 days
期刊介绍:
Agronomy (ISSN 2073-4395) is an international and cross-disciplinary scholarly journal on agronomy and agroecology. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental and/or methodical details must be provided for research articles.