{"title":"刺突蛋白电位受体研究:SARS-CoV-2 -AC2/CD147复合物的比较计算分析方法","authors":"A. Makhloufi, R. Ghemit, M. El Kolli","doi":"10.33263/briac134.351","DOIUrl":null,"url":null,"abstract":"SARS-CoV-2 invades host cells via interaction of its spike protein with the human angiotensin-converting enzyme 2 as the receptor. CD147, as a biomarker for hyperinflammation, was found to be the functional receptor for SARS-CoV-2 and an additional cell entry route. In this paper, we focused our analysis on the initial step of virus infection by comparing the affinity, stability, and specificity of the SARS-CoV-2 spike 1-AC2 and SARS-CoV-2 spike 1-CD147 complexes. Protein-protein docking was utilized for identifying the hotspot residues in the interface of spike protein with AC2 and CD147. The results of binding free energies showed a high affinity of SP1-AC2 complex (-52.97 kcal/mol) compared with SP1-CoV2/CD147 (-35.75 kcal/mol). RMSF values indicate that the spike protein of SARS-CoV-2 RBD is more compatible with binding to the human ACE2 with high flexibility. Computational analysis of binding modes and protein contacts reported that CD147 and ACE2 might be two complementary receptors mediating virus infection and confirmed the experimental results previously.","PeriodicalId":9026,"journal":{"name":"Biointerface Research in Applied Chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spike Protein Potential Receptors Study: Comparative Computational Analysis Approach on SARS-CoV-2 -AC2/CD147 Complexes\",\"authors\":\"A. Makhloufi, R. Ghemit, M. El Kolli\",\"doi\":\"10.33263/briac134.351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SARS-CoV-2 invades host cells via interaction of its spike protein with the human angiotensin-converting enzyme 2 as the receptor. CD147, as a biomarker for hyperinflammation, was found to be the functional receptor for SARS-CoV-2 and an additional cell entry route. In this paper, we focused our analysis on the initial step of virus infection by comparing the affinity, stability, and specificity of the SARS-CoV-2 spike 1-AC2 and SARS-CoV-2 spike 1-CD147 complexes. Protein-protein docking was utilized for identifying the hotspot residues in the interface of spike protein with AC2 and CD147. The results of binding free energies showed a high affinity of SP1-AC2 complex (-52.97 kcal/mol) compared with SP1-CoV2/CD147 (-35.75 kcal/mol). RMSF values indicate that the spike protein of SARS-CoV-2 RBD is more compatible with binding to the human ACE2 with high flexibility. Computational analysis of binding modes and protein contacts reported that CD147 and ACE2 might be two complementary receptors mediating virus infection and confirmed the experimental results previously.\",\"PeriodicalId\":9026,\"journal\":{\"name\":\"Biointerface Research in Applied Chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biointerface Research in Applied Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/briac134.351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerface Research in Applied Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/briac134.351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Spike Protein Potential Receptors Study: Comparative Computational Analysis Approach on SARS-CoV-2 -AC2/CD147 Complexes
SARS-CoV-2 invades host cells via interaction of its spike protein with the human angiotensin-converting enzyme 2 as the receptor. CD147, as a biomarker for hyperinflammation, was found to be the functional receptor for SARS-CoV-2 and an additional cell entry route. In this paper, we focused our analysis on the initial step of virus infection by comparing the affinity, stability, and specificity of the SARS-CoV-2 spike 1-AC2 and SARS-CoV-2 spike 1-CD147 complexes. Protein-protein docking was utilized for identifying the hotspot residues in the interface of spike protein with AC2 and CD147. The results of binding free energies showed a high affinity of SP1-AC2 complex (-52.97 kcal/mol) compared with SP1-CoV2/CD147 (-35.75 kcal/mol). RMSF values indicate that the spike protein of SARS-CoV-2 RBD is more compatible with binding to the human ACE2 with high flexibility. Computational analysis of binding modes and protein contacts reported that CD147 and ACE2 might be two complementary receptors mediating virus infection and confirmed the experimental results previously.
期刊介绍:
Biointerface Research in Applied Chemistry is an international and interdisciplinary research journal that focuses on all aspects of nanoscience, bioscience and applied chemistry. Submissions are solicited in all topical areas, ranging from basic aspects of the science materials to practical applications of such materials. With 6 issues per year, the first one published on the 15th of February of 2011, Biointerface Research in Applied Chemistry is an open-access journal, making all research results freely available online. The aim is to publish original papers, short communications as well as review papers highlighting interdisciplinary research, the potential applications of the molecules and materials in the bio-field. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible.