{"title":"预测金融压力对石油市场和海湾合作委员会金融市场之间对冲的影响","authors":"Taicir Mezghani, M. Boujelbene, Souha Boutouria","doi":"10.1108/mf-10-2022-0472","DOIUrl":null,"url":null,"abstract":"PurposeThis paper investigates the predictive impact of Financial Stress on hedging between the oil market and the GCC stock and bond markets from January 1, 2007, to December 31, 2020. The authors also compare the hedging performance of in-sample and out-of-sample analyses.Design/methodology/approachFor the modeling purpose, the authors combine the GARCH-BEKK model with the machine learning approach to predict the transmission of shocks between the financial markets and the oil market. The authors also examine the hedging performance in order to obtain well-diversified portfolios under both Financial Stress cases, using a One-Dimensional Convolutional Neural Network (1D-CNN) model.FindingsAccording to the results, the in-sample analysis shows that investors can use oil to hedge stock markets under positive Financial Stress. In addition, the authors prove that oil hedging is ineffective in reducing market risks for bond markets. The out-of-sample results demonstrate the ability of hedging effectiveness to minimize portfolio risk during the recent pandemic in both Financial Stress cases. Interestingly, hedgers will have a more efficient hedging performance in the stock and oil market in the case of positive (negative) Financial Stress. The findings seem to be confirmed by the Diebold-Mariano test, suggesting that including the negative (positive) Financial Stress in the hedging strategy displays better out-of-sample performance than the in-sample model.Originality/valueThis study improves the understanding of the whole sample and positive (negative) Financial Stress estimates and forecasts of hedge effectiveness for both the out-of-sample and in-sample estimates. A portfolio strategy based on transmission shock prediction provides diversification benefits.","PeriodicalId":18140,"journal":{"name":"Managerial Finance","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Forecasting the impact of financial stress on hedging between the oil market and GCC financial markets\",\"authors\":\"Taicir Mezghani, M. Boujelbene, Souha Boutouria\",\"doi\":\"10.1108/mf-10-2022-0472\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeThis paper investigates the predictive impact of Financial Stress on hedging between the oil market and the GCC stock and bond markets from January 1, 2007, to December 31, 2020. The authors also compare the hedging performance of in-sample and out-of-sample analyses.Design/methodology/approachFor the modeling purpose, the authors combine the GARCH-BEKK model with the machine learning approach to predict the transmission of shocks between the financial markets and the oil market. The authors also examine the hedging performance in order to obtain well-diversified portfolios under both Financial Stress cases, using a One-Dimensional Convolutional Neural Network (1D-CNN) model.FindingsAccording to the results, the in-sample analysis shows that investors can use oil to hedge stock markets under positive Financial Stress. In addition, the authors prove that oil hedging is ineffective in reducing market risks for bond markets. The out-of-sample results demonstrate the ability of hedging effectiveness to minimize portfolio risk during the recent pandemic in both Financial Stress cases. Interestingly, hedgers will have a more efficient hedging performance in the stock and oil market in the case of positive (negative) Financial Stress. The findings seem to be confirmed by the Diebold-Mariano test, suggesting that including the negative (positive) Financial Stress in the hedging strategy displays better out-of-sample performance than the in-sample model.Originality/valueThis study improves the understanding of the whole sample and positive (negative) Financial Stress estimates and forecasts of hedge effectiveness for both the out-of-sample and in-sample estimates. A portfolio strategy based on transmission shock prediction provides diversification benefits.\",\"PeriodicalId\":18140,\"journal\":{\"name\":\"Managerial Finance\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Managerial Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/mf-10-2022-0472\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Managerial Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/mf-10-2022-0472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Forecasting the impact of financial stress on hedging between the oil market and GCC financial markets
PurposeThis paper investigates the predictive impact of Financial Stress on hedging between the oil market and the GCC stock and bond markets from January 1, 2007, to December 31, 2020. The authors also compare the hedging performance of in-sample and out-of-sample analyses.Design/methodology/approachFor the modeling purpose, the authors combine the GARCH-BEKK model with the machine learning approach to predict the transmission of shocks between the financial markets and the oil market. The authors also examine the hedging performance in order to obtain well-diversified portfolios under both Financial Stress cases, using a One-Dimensional Convolutional Neural Network (1D-CNN) model.FindingsAccording to the results, the in-sample analysis shows that investors can use oil to hedge stock markets under positive Financial Stress. In addition, the authors prove that oil hedging is ineffective in reducing market risks for bond markets. The out-of-sample results demonstrate the ability of hedging effectiveness to minimize portfolio risk during the recent pandemic in both Financial Stress cases. Interestingly, hedgers will have a more efficient hedging performance in the stock and oil market in the case of positive (negative) Financial Stress. The findings seem to be confirmed by the Diebold-Mariano test, suggesting that including the negative (positive) Financial Stress in the hedging strategy displays better out-of-sample performance than the in-sample model.Originality/valueThis study improves the understanding of the whole sample and positive (negative) Financial Stress estimates and forecasts of hedge effectiveness for both the out-of-sample and in-sample estimates. A portfolio strategy based on transmission shock prediction provides diversification benefits.
期刊介绍:
Managerial Finance provides an international forum for the publication of high quality and topical research in the area of finance, such as corporate finance, financial management, financial markets and institutions, international finance, banking, insurance and risk management, real estate and financial education. Theoretical and empirical research is welcome as well as cross-disciplinary work, such as papers investigating the relationship of finance with other sectors.