利用光谱学和激光陷阱研究了锂对人体红细胞的影响

IF 2.2 4区 生物学 Q3 BIOPHYSICS European Biophysics Journal Pub Date : 2023-03-17 DOI:10.1007/s00249-023-01643-2
Yashveer Singh, Aniket Chowdhury, Raktim Dasgupta, Shovan Kumar Majumder
{"title":"利用光谱学和激光陷阱研究了锂对人体红细胞的影响","authors":"Yashveer Singh,&nbsp;Aniket Chowdhury,&nbsp;Raktim Dasgupta,&nbsp;Shovan Kumar Majumder","doi":"10.1007/s00249-023-01643-2","DOIUrl":null,"url":null,"abstract":"<div><p>\nLithium has been the treatment of choice for patients with bipolar disorder<b>.</b> However, lithium overdose happens more frequently since it has a very narrow therapeutic range in blood, necessitating investigation of its adverse effects on blood cells. The possible changes that lithium exposure may have on functional and morphological characteristics of human red blood cells (RBCs) have been studied ex vivo using single-cell Raman spectroscopy, optical trapping, and membrane fluorescent probe. The Raman spectroscopy was performed with excitation at 532 nm light, which also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction of lithium-exposed RBCs was observed to decline with lithium concentration, indicating irreversible oxygenation of intracellular Hb from lithium exposure. The lithium exposure may also have an effect on RBC membrane, which was investigated via optical stretching in a laser trap and the results suggest lower membrane fluidity for the lithium-exposed RBCs. The membrane fluidity of RBCs was further studied using the Prodan generalized polarization method and the results verify the reduction of membrane fluidity upon lithium exposure.</p></div>","PeriodicalId":548,"journal":{"name":"European Biophysics Journal","volume":"52 1-2","pages":"91 - 100"},"PeriodicalIF":2.2000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00249-023-01643-2.pdf","citationCount":"0","resultStr":"{\"title\":\"The effects of lithium on human red blood cells studied using optical spectroscopy and laser trap\",\"authors\":\"Yashveer Singh,&nbsp;Aniket Chowdhury,&nbsp;Raktim Dasgupta,&nbsp;Shovan Kumar Majumder\",\"doi\":\"10.1007/s00249-023-01643-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>\\nLithium has been the treatment of choice for patients with bipolar disorder<b>.</b> However, lithium overdose happens more frequently since it has a very narrow therapeutic range in blood, necessitating investigation of its adverse effects on blood cells. The possible changes that lithium exposure may have on functional and morphological characteristics of human red blood cells (RBCs) have been studied ex vivo using single-cell Raman spectroscopy, optical trapping, and membrane fluorescent probe. The Raman spectroscopy was performed with excitation at 532 nm light, which also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction of lithium-exposed RBCs was observed to decline with lithium concentration, indicating irreversible oxygenation of intracellular Hb from lithium exposure. The lithium exposure may also have an effect on RBC membrane, which was investigated via optical stretching in a laser trap and the results suggest lower membrane fluidity for the lithium-exposed RBCs. The membrane fluidity of RBCs was further studied using the Prodan generalized polarization method and the results verify the reduction of membrane fluidity upon lithium exposure.</p></div>\",\"PeriodicalId\":548,\"journal\":{\"name\":\"European Biophysics Journal\",\"volume\":\"52 1-2\",\"pages\":\"91 - 100\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00249-023-01643-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Biophysics Journal\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00249-023-01643-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Biophysics Journal","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1007/s00249-023-01643-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

锂一直是双相情感障碍患者的治疗选择。然而,由于锂在血液中的治疗范围非常窄,因此过量发生的频率更高,因此有必要研究其对血细胞的不良影响。利用单细胞拉曼光谱、光捕获和膜荧光探针研究了锂暴露对人红细胞(rbc)功能和形态特征可能产生的变化。在532 nm光激发下进行拉曼光谱,这也导致细胞内血红蛋白(Hb)的同时光还原。观察到锂暴露红细胞的光还原水平随锂浓度下降,表明锂暴露导致细胞内Hb不可逆氧化。锂暴露也可能对红细胞膜产生影响,通过激光陷阱中的光学拉伸研究了这一点,结果表明锂暴露的红细胞膜流动性较低。利用Prodan广义极化法进一步研究了红细胞的膜流动性,结果证实了锂暴露后膜流动性的降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effects of lithium on human red blood cells studied using optical spectroscopy and laser trap

Lithium has been the treatment of choice for patients with bipolar disorder. However, lithium overdose happens more frequently since it has a very narrow therapeutic range in blood, necessitating investigation of its adverse effects on blood cells. The possible changes that lithium exposure may have on functional and morphological characteristics of human red blood cells (RBCs) have been studied ex vivo using single-cell Raman spectroscopy, optical trapping, and membrane fluorescent probe. The Raman spectroscopy was performed with excitation at 532 nm light, which also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction of lithium-exposed RBCs was observed to decline with lithium concentration, indicating irreversible oxygenation of intracellular Hb from lithium exposure. The lithium exposure may also have an effect on RBC membrane, which was investigated via optical stretching in a laser trap and the results suggest lower membrane fluidity for the lithium-exposed RBCs. The membrane fluidity of RBCs was further studied using the Prodan generalized polarization method and the results verify the reduction of membrane fluidity upon lithium exposure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
European Biophysics Journal
European Biophysics Journal 生物-生物物理
CiteScore
4.30
自引率
0.00%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The journal publishes papers in the field of biophysics, which is defined as the study of biological phenomena by using physical methods and concepts. Original papers, reviews and Biophysics letters are published. The primary goal of this journal is to advance the understanding of biological structure and function by application of the principles of physical science, and by presenting the work in a biophysical context. Papers employing a distinctively biophysical approach at all levels of biological organisation will be considered, as will both experimental and theoretical studies. The criteria for acceptance are scientific content, originality and relevance to biological systems of current interest and importance. Principal areas of interest include: - Structure and dynamics of biological macromolecules - Membrane biophysics and ion channels - Cell biophysics and organisation - Macromolecular assemblies - Biophysical methods and instrumentation - Advanced microscopics - System dynamics.
期刊最新文献
Exploring characteristic features for effective HCN1 channel inhibition using integrated analytical approaches: 3D QSAR, molecular docking, homology modelling, ADME and molecular dynamics Quantitative characterization of non-specific interaction of two globular proteins with Dextran T70 in a binary mixture The origin of mutational epistasis Time-dependent simulation of blood flow through an abdominal aorta with iliac arteries Extreme enthalpy‒entropy compensation in the dimerization of small solutes in aqueous solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1