过程模拟器COCO:甲烷氧化模拟及其与商业模拟器预测的一致性

IF 1 Q4 ENGINEERING, CHEMICAL Chemical Product and Process Modeling Pub Date : 2023-08-03 DOI:10.1515/cppm-2023-0035
Toyese OYEGOKE
{"title":"过程模拟器COCO:甲烷氧化模拟及其与商业模拟器预测的一致性","authors":"Toyese OYEGOKE","doi":"10.1515/cppm-2023-0035","DOIUrl":null,"url":null,"abstract":"Abstract It is impossible to overstate the value of process simulators in teaching process engineers about petrochemical, chemical, nuclear, and biological processes. Several chemical engineering topics, including process design, thermodynamics, process integration, separation processes, safety, and others, are made easier to teach because of this. Only a handful of these process simulators are freeware, while most are largely commercial. The ones that are commercialized are renowned for their friendliness, extensive media coverage, and international credibility attained for their forecasts in several industrial applications. However, schools in low-income countries may not be able to buy them. In contrast, the freeware publicity is not relatively low, less friendly, and cheaper than the commercial ones. This research compares the agreement of the forecast of commercial process simulators with freeware ones in an effort to strengthen institutions’ trust in the prediction of freeware process simulators. The analysis modeled and simulated a chemical process involving the Gibbs reactor, heater, compressor, and mixer in the COCO and Aspen HYSYS simulators. Findings from the research reveal good agreement in the predicted results obtained from the various process simulators. With the use of COCO, different possible methane oxidation routes were analyzed. The analysis confirmed that the route leading to the formation of CO2 and water would be less energetic than other routes. In addition, the formation of water would be much easier in the process than hydrogen at the condition employed in the study. Due to cost, the study recommends using the freeware process simulator instead of the cracked version, which is often utilized in educating process engineers and research projects in communities where research and education are poorly funded.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COCO, a process simulator: methane oxidation simulation & its agreement with commercial simulator’s predictions\",\"authors\":\"Toyese OYEGOKE\",\"doi\":\"10.1515/cppm-2023-0035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract It is impossible to overstate the value of process simulators in teaching process engineers about petrochemical, chemical, nuclear, and biological processes. Several chemical engineering topics, including process design, thermodynamics, process integration, separation processes, safety, and others, are made easier to teach because of this. Only a handful of these process simulators are freeware, while most are largely commercial. The ones that are commercialized are renowned for their friendliness, extensive media coverage, and international credibility attained for their forecasts in several industrial applications. However, schools in low-income countries may not be able to buy them. In contrast, the freeware publicity is not relatively low, less friendly, and cheaper than the commercial ones. This research compares the agreement of the forecast of commercial process simulators with freeware ones in an effort to strengthen institutions’ trust in the prediction of freeware process simulators. The analysis modeled and simulated a chemical process involving the Gibbs reactor, heater, compressor, and mixer in the COCO and Aspen HYSYS simulators. Findings from the research reveal good agreement in the predicted results obtained from the various process simulators. With the use of COCO, different possible methane oxidation routes were analyzed. The analysis confirmed that the route leading to the formation of CO2 and water would be less energetic than other routes. In addition, the formation of water would be much easier in the process than hydrogen at the condition employed in the study. Due to cost, the study recommends using the freeware process simulator instead of the cracked version, which is often utilized in educating process engineers and research projects in communities where research and education are poorly funded.\",\"PeriodicalId\":9935,\"journal\":{\"name\":\"Chemical Product and Process Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Product and Process Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cppm-2023-0035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2023-0035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要过程模拟器在向过程工程师教授石化、化学、核和生物过程方面的价值怎么强调都不为过。因此,一些化学工程主题,包括工艺设计、热力学、工艺集成、分离工艺、安全等,变得更容易教授。这些过程模拟器中只有少数是免费的,而大多数都是商业化的。商业化的预测以其友好性、广泛的媒体报道和在几个工业应用中的预测而闻名。然而,低收入国家的学校可能买不到它们。相比之下,免费软件的宣传并不相对较低,不那么友好,而且比商业软件便宜。本研究比较了商业过程模拟器和免费过程模拟器的预测一致性,以加强机构对免费过程模拟器预测的信任。该分析对COCO和Aspen HYSYS模拟器中涉及吉布斯反应器、加热器、压缩机和混合器的化学过程进行了建模和模拟。研究结果表明,从各种过程模拟器中获得的预测结果非常一致。使用COCO,分析了不同可能的甲烷氧化路线。分析证实,导致二氧化碳和水形成的途径比其他途径能量更低。此外,在研究中使用的条件下,水在该过程中的形成将比氢容易得多。由于成本原因,该研究建议使用免费的过程模拟器,而不是破解版,破解版通常用于教育研究和教育资金不足的社区的过程工程师和研究项目。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COCO, a process simulator: methane oxidation simulation & its agreement with commercial simulator’s predictions
Abstract It is impossible to overstate the value of process simulators in teaching process engineers about petrochemical, chemical, nuclear, and biological processes. Several chemical engineering topics, including process design, thermodynamics, process integration, separation processes, safety, and others, are made easier to teach because of this. Only a handful of these process simulators are freeware, while most are largely commercial. The ones that are commercialized are renowned for their friendliness, extensive media coverage, and international credibility attained for their forecasts in several industrial applications. However, schools in low-income countries may not be able to buy them. In contrast, the freeware publicity is not relatively low, less friendly, and cheaper than the commercial ones. This research compares the agreement of the forecast of commercial process simulators with freeware ones in an effort to strengthen institutions’ trust in the prediction of freeware process simulators. The analysis modeled and simulated a chemical process involving the Gibbs reactor, heater, compressor, and mixer in the COCO and Aspen HYSYS simulators. Findings from the research reveal good agreement in the predicted results obtained from the various process simulators. With the use of COCO, different possible methane oxidation routes were analyzed. The analysis confirmed that the route leading to the formation of CO2 and water would be less energetic than other routes. In addition, the formation of water would be much easier in the process than hydrogen at the condition employed in the study. Due to cost, the study recommends using the freeware process simulator instead of the cracked version, which is often utilized in educating process engineers and research projects in communities where research and education are poorly funded.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
期刊最新文献
Layouts and tips for a typical final-year chemical engineering graduation project A parametric study on syngas production by adding CO2 and CH4 on steam gasification of biomass system using ASPEN Plus Temperature optimization model to inhibit zero-order kinetic reactions Numerical investigation of discharge pressure effect on steam ejector performance in renewable refrigeration cycle by considering wet steam model and dry gas model Energy efficiency in cooling systems: integrating machine learning and meta-heuristic algorithms for precise cooling load prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1