ar等离子体增强铜镍合金催化合成氨

Zhou Yimeng, Lv Jiabao, Peng Yaqi, Lin Xiaoqing, Lv Xingjie, Ye Qiulin, Liu Shaojun, Wu Angjian, Li Xiaodong
{"title":"ar等离子体增强铜镍合金催化合成氨","authors":"Zhou Yimeng,&nbsp;Lv Jiabao,&nbsp;Peng Yaqi,&nbsp;Lin Xiaoqing,&nbsp;Lv Xingjie,&nbsp;Ye Qiulin,&nbsp;Liu Shaojun,&nbsp;Wu Angjian,&nbsp;Li Xiaodong","doi":"10.1007/s42768-022-00095-2","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia (NH<sub>3</sub>) synthesis via electrocatalytic nitrogen reduction generally suffers from low NH<sub>3</sub> yield and faradaic efficiency. Compared with activating stable, low-solubility N<sub>2</sub>, the electrochemical conversion of nitrates to ammonia provides a more reasonable route for NH<sub>3</sub> production. Herein, we introduce Ar-plasma to enhance the interaction between copper-nickel alloys and carbon substrate to improve the performance of NH<sub>3</sub> production. The NH<sub>3</sub> faradaic efficiency from nitrate is nearly 100% and the yield rate is over 6000 <span>\\({\\mathrm{\\mu g}}_{{\\mathrm{NH}}_{3}}{\\mathrm{cm}}^{-2}{\\mathrm{h}}^{-1}\\)</span>. DFT (density functional theory) calculation reveals the high performance of Cu<sub>50</sub>Ni<sub>50</sub> originates from the lower energy barrier on the reaction path and the closer position to the Fermi level of the d-band center. This work offers a promising strategy for plasma-modified electrocatalyst to promote ammonia synthesis via nitrate reduction.</p></div>","PeriodicalId":807,"journal":{"name":"Waste Disposal & Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ar-plasma enhanced copper-nickel alloy catalysis for ammonia synthesis\",\"authors\":\"Zhou Yimeng,&nbsp;Lv Jiabao,&nbsp;Peng Yaqi,&nbsp;Lin Xiaoqing,&nbsp;Lv Xingjie,&nbsp;Ye Qiulin,&nbsp;Liu Shaojun,&nbsp;Wu Angjian,&nbsp;Li Xiaodong\",\"doi\":\"10.1007/s42768-022-00095-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ammonia (NH<sub>3</sub>) synthesis via electrocatalytic nitrogen reduction generally suffers from low NH<sub>3</sub> yield and faradaic efficiency. Compared with activating stable, low-solubility N<sub>2</sub>, the electrochemical conversion of nitrates to ammonia provides a more reasonable route for NH<sub>3</sub> production. Herein, we introduce Ar-plasma to enhance the interaction between copper-nickel alloys and carbon substrate to improve the performance of NH<sub>3</sub> production. The NH<sub>3</sub> faradaic efficiency from nitrate is nearly 100% and the yield rate is over 6000 <span>\\\\({\\\\mathrm{\\\\mu g}}_{{\\\\mathrm{NH}}_{3}}{\\\\mathrm{cm}}^{-2}{\\\\mathrm{h}}^{-1}\\\\)</span>. DFT (density functional theory) calculation reveals the high performance of Cu<sub>50</sub>Ni<sub>50</sub> originates from the lower energy barrier on the reaction path and the closer position to the Fermi level of the d-band center. This work offers a promising strategy for plasma-modified electrocatalyst to promote ammonia synthesis via nitrate reduction.</p></div>\",\"PeriodicalId\":807,\"journal\":{\"name\":\"Waste Disposal & Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Waste Disposal & Sustainable Energy\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42768-022-00095-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Disposal & Sustainable Energy","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s42768-022-00095-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电催化氮还原法合成氨通常存在NH3产率低和法拉第效率低的问题。与激活稳定、低溶解度的N2相比,硝酸盐的电化学转化为氨为NH3的生产提供了更合理的途径。在此,我们引入ar等离子体来增强铜镍合金与碳衬底之间的相互作用,以提高NH3的生产性能。硝态氮的法拉第效率接近100% and the yield rate is over 6000 \({\mathrm{\mu g}}_{{\mathrm{NH}}_{3}}{\mathrm{cm}}^{-2}{\mathrm{h}}^{-1}\). DFT (density functional theory) calculation reveals the high performance of Cu50Ni50 originates from the lower energy barrier on the reaction path and the closer position to the Fermi level of the d-band center. This work offers a promising strategy for plasma-modified electrocatalyst to promote ammonia synthesis via nitrate reduction.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ar-plasma enhanced copper-nickel alloy catalysis for ammonia synthesis

Ammonia (NH3) synthesis via electrocatalytic nitrogen reduction generally suffers from low NH3 yield and faradaic efficiency. Compared with activating stable, low-solubility N2, the electrochemical conversion of nitrates to ammonia provides a more reasonable route for NH3 production. Herein, we introduce Ar-plasma to enhance the interaction between copper-nickel alloys and carbon substrate to improve the performance of NH3 production. The NH3 faradaic efficiency from nitrate is nearly 100% and the yield rate is over 6000 \({\mathrm{\mu g}}_{{\mathrm{NH}}_{3}}{\mathrm{cm}}^{-2}{\mathrm{h}}^{-1}\). DFT (density functional theory) calculation reveals the high performance of Cu50Ni50 originates from the lower energy barrier on the reaction path and the closer position to the Fermi level of the d-band center. This work offers a promising strategy for plasma-modified electrocatalyst to promote ammonia synthesis via nitrate reduction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Slum dynamics: the interplay of remittances, waste disposal and health outcomes A review on graphite carbon nitride (g-C3N4)-based composite for antibiotics and dye degradation and hydrogen production Functionalizing carbon nanofibers with chicken manure to catalyse oxygen reduction reaction in a fuel cell Research on heat dissipation optimization and energy conservation of supercapacitor energy storage tram Innovations in food waste management: from resource recovery to sustainable solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1