混合云上安全扰动数据的查询处理

Sridhar Reddy Vulapula, Srinivas Malladi
{"title":"混合云上安全扰动数据的查询处理","authors":"Sridhar Reddy Vulapula, Srinivas Malladi","doi":"10.1108/ijius-09-2020-0054","DOIUrl":null,"url":null,"abstract":"PurposeHybrid cloud composing of public and private cloud is seen as a solution for storage of health care data characterized by many private and sensitive data. In many hybrid cloud-based solutions, the data are perturbed and kept in public cloud, and the perturbation credentials are kept in private cloud.Design/methodology/approachHybrid cloud is a model combing private and public cloud. Security for the data is enforced using this distribution in hybrid clouds. However, these mechanisms are not efficient for range query and retrieval of data from cloud. In this work, a secure and efficient retrieval solution combining K-mean clustering, geometric perturbation and R-Tree indexing is proposed for hybrid clouds.FindingsCompared to existing solution, the proposed indexing on perturbed data is able to achieve 33% reduced retrieval time. The security of indexes as measured using variance of differences was 66% more than existing solutions.Originality/valueThis study is an attempt for efficient retrieval of data with range queries using R-Tree indexing approach.","PeriodicalId":42876,"journal":{"name":"International Journal of Intelligent Unmanned Systems","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Query processing over secure perturbed data over hybrid cloud\",\"authors\":\"Sridhar Reddy Vulapula, Srinivas Malladi\",\"doi\":\"10.1108/ijius-09-2020-0054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeHybrid cloud composing of public and private cloud is seen as a solution for storage of health care data characterized by many private and sensitive data. In many hybrid cloud-based solutions, the data are perturbed and kept in public cloud, and the perturbation credentials are kept in private cloud.Design/methodology/approachHybrid cloud is a model combing private and public cloud. Security for the data is enforced using this distribution in hybrid clouds. However, these mechanisms are not efficient for range query and retrieval of data from cloud. In this work, a secure and efficient retrieval solution combining K-mean clustering, geometric perturbation and R-Tree indexing is proposed for hybrid clouds.FindingsCompared to existing solution, the proposed indexing on perturbed data is able to achieve 33% reduced retrieval time. The security of indexes as measured using variance of differences was 66% more than existing solutions.Originality/valueThis study is an attempt for efficient retrieval of data with range queries using R-Tree indexing approach.\",\"PeriodicalId\":42876,\"journal\":{\"name\":\"International Journal of Intelligent Unmanned Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Unmanned Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/ijius-09-2020-0054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Unmanned Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijius-09-2020-0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 1

摘要

目的由公有云和私有云组成的混合云被视为一种存储医疗保健数据的解决方案,其特征是许多私有和敏感数据。在许多基于混合云的解决方案中,数据被扰动并保存在公共云中,扰动证书保存在私有云中。设计/方法论/方法混合云是一种结合私有云和公有云的模型。数据的安全性是在混合云中使用这种分布来强制执行的。然而,这些机制对于云数据的范围查询和检索并不有效。在这项工作中,结合K-均值聚类、几何扰动和R-树索引,提出了一种安全高效的混合云检索解决方案。发现与现有的解决方案相比,所提出的对扰动数据的索引能够实现33%的检索时间减少。使用差异方差测量的指数的安全性比现有解决方案高66%。原创性/价值本研究尝试使用R-树索引方法通过范围查询有效检索数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Query processing over secure perturbed data over hybrid cloud
PurposeHybrid cloud composing of public and private cloud is seen as a solution for storage of health care data characterized by many private and sensitive data. In many hybrid cloud-based solutions, the data are perturbed and kept in public cloud, and the perturbation credentials are kept in private cloud.Design/methodology/approachHybrid cloud is a model combing private and public cloud. Security for the data is enforced using this distribution in hybrid clouds. However, these mechanisms are not efficient for range query and retrieval of data from cloud. In this work, a secure and efficient retrieval solution combining K-mean clustering, geometric perturbation and R-Tree indexing is proposed for hybrid clouds.FindingsCompared to existing solution, the proposed indexing on perturbed data is able to achieve 33% reduced retrieval time. The security of indexes as measured using variance of differences was 66% more than existing solutions.Originality/valueThis study is an attempt for efficient retrieval of data with range queries using R-Tree indexing approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
21
期刊最新文献
Design of hexacopter and finite element analysis for material selection Towards a novel cyber physical control system framework: a deep learning driven use case Employing a multi-sensor fusion array to detect objects for an orbital transfer vehicle to remove space debris Communication via quad/hexa-copters during disasters Nonlinear optimal control for UAVs with tilting rotors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1