硬岩加卸载试验及其弹塑性损伤耦合模型

IF 0.5 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Acta Geotechnica Slovenica Pub Date : 2018-12-01 DOI:10.18690/ACTAGEOTECHSLOV.15.2.38-46.2018
Zhen Li, Dongdong Zhang, Shuangxi Zhao
{"title":"硬岩加卸载试验及其弹塑性损伤耦合模型","authors":"Zhen Li, Dongdong Zhang, Shuangxi Zhao","doi":"10.18690/ACTAGEOTECHSLOV.15.2.38-46.2018","DOIUrl":null,"url":null,"abstract":"Deep-buried engineering and test results show that hard rocks behave as part of an elastoplastic damage coupling process. The coupling effect can contribute to the weakness of the surrounding rocks and the extension of the water channels. As a result, the coupled elastoplastic damage model is the basis for a stability analysis in deep engineering. In this paper loading and unloading tests were conducted on T2b marble in the Jinping II hydropower station. Based on the tests the effects of the confining pressure on the strength, the failure strain and the dilation were analyzed. According to the plastic shear failure and the parameters weakness mechanism, the damage-evolution function reflecting the weakness character, the loading function and the plastic potential function regarding plastic hardening were proposed. The activation of the damage and plastic process was then studied. The coupled elastoplastic damage model was finally established. Through simulating the test curve, the proposed model was verified. This model could play an important role in the stability analysis of deep-buried hard-rock engineering. Z. Li et al.: Loading and unloading test of hard rock and its elastoplastic damage coupling model","PeriodicalId":50897,"journal":{"name":"Acta Geotechnica Slovenica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Loading and unloading test of hard rock and its elastoplastic damage coupling model\",\"authors\":\"Zhen Li, Dongdong Zhang, Shuangxi Zhao\",\"doi\":\"10.18690/ACTAGEOTECHSLOV.15.2.38-46.2018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep-buried engineering and test results show that hard rocks behave as part of an elastoplastic damage coupling process. The coupling effect can contribute to the weakness of the surrounding rocks and the extension of the water channels. As a result, the coupled elastoplastic damage model is the basis for a stability analysis in deep engineering. In this paper loading and unloading tests were conducted on T2b marble in the Jinping II hydropower station. Based on the tests the effects of the confining pressure on the strength, the failure strain and the dilation were analyzed. According to the plastic shear failure and the parameters weakness mechanism, the damage-evolution function reflecting the weakness character, the loading function and the plastic potential function regarding plastic hardening were proposed. The activation of the damage and plastic process was then studied. The coupled elastoplastic damage model was finally established. Through simulating the test curve, the proposed model was verified. This model could play an important role in the stability analysis of deep-buried hard-rock engineering. Z. Li et al.: Loading and unloading test of hard rock and its elastoplastic damage coupling model\",\"PeriodicalId\":50897,\"journal\":{\"name\":\"Acta Geotechnica Slovenica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geotechnica Slovenica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.18690/ACTAGEOTECHSLOV.15.2.38-46.2018\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geotechnica Slovenica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.18690/ACTAGEOTECHSLOV.15.2.38-46.2018","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 2

摘要

深埋工程和试验结果表明,坚硬岩石的行为是弹塑性损伤耦合过程的一部分。耦合效应会导致围岩的软弱和水道的延伸。因此,弹塑性损伤耦合模型是深部工程稳定性分析的基础。本文对锦屏二级水电站T2b大理岩进行了加载和卸载试验。在试验的基础上,分析了围压对强度、破坏应变和膨胀的影响。根据塑性剪切破坏和参数弱化机理,提出了反映弱化特征的损伤演化函数、塑性硬化的加载函数和塑性势函数。然后研究了损伤的激活和塑性过程。最后建立了弹塑性损伤耦合模型。通过对试验曲线的仿真,验证了该模型的正确性。该模型可在深埋硬质岩石工程的稳定性分析中发挥重要作用。Z.Li等:坚硬岩石的加卸载试验及其弹塑性损伤耦合模型
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Loading and unloading test of hard rock and its elastoplastic damage coupling model
Deep-buried engineering and test results show that hard rocks behave as part of an elastoplastic damage coupling process. The coupling effect can contribute to the weakness of the surrounding rocks and the extension of the water channels. As a result, the coupled elastoplastic damage model is the basis for a stability analysis in deep engineering. In this paper loading and unloading tests were conducted on T2b marble in the Jinping II hydropower station. Based on the tests the effects of the confining pressure on the strength, the failure strain and the dilation were analyzed. According to the plastic shear failure and the parameters weakness mechanism, the damage-evolution function reflecting the weakness character, the loading function and the plastic potential function regarding plastic hardening were proposed. The activation of the damage and plastic process was then studied. The coupled elastoplastic damage model was finally established. Through simulating the test curve, the proposed model was verified. This model could play an important role in the stability analysis of deep-buried hard-rock engineering. Z. Li et al.: Loading and unloading test of hard rock and its elastoplastic damage coupling model
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geotechnica Slovenica
Acta Geotechnica Slovenica 地学-工程:地质
CiteScore
1.20
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: ACTA GEOTECHNICA SLOVENICA aims to play an important role in publishing high-quality, theoretical papers from important and emerging areas that will have a lasting impact on fundamental and practical aspects of geomechanics and geotechnical engineering. ACTA GEOTECHNICA SLOVENICA publishes papers from the following areas: soil and rock mechanics, engineering geology, environmental geotechnics, geosynthetic, geotechnical structures, numerical and analytical methods, computer modelling, optimization of geotechnical structures, field and laboratory testing. The journal is published twice a year.
期刊最新文献
Diametric splitting tests on unsaturated expansive soil with different dry densities based on particle image velocimetry technique A framework for the use of reliability methods in deep urban excavations analysis Threshold silt content dependency on particle morphology (shape and size) of granular materials: review with new evidence Small scale model test on lateral behaviors of pile group in loose silica sand Improved general slice method of limit equilibrium for slope stability analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1