{"title":"快速snn:基于转换量化神经网络的快速尖峰神经网络","authors":"Yang‐Zhi Hu, Qian Zheng, Xudong Jiang, Gang Pan","doi":"10.48550/arXiv.2305.19868","DOIUrl":null,"url":null,"abstract":"Spiking neural networks (SNNs) have shown advantages in computation and energy efficiency over traditional artificial neural networks (ANNs) thanks to their event-driven representations. SNNs also replace weight multiplications in ANNs with additions, which are more energy-efficient and less computationally intensive. However, it remains a challenge to train deep SNNs due to the discrete spiking function. A popular approach to circumvent this challenge is ANN-to-SNN conversion. However, due to the quantization error and accumulating error, it often requires lots of time steps (high inference latency) to achieve high performance, which negates SNN's advantages. To this end, this paper proposes Fast-SNN that achieves high performance with low latency. We demonstrate the equivalent mapping between temporal quantization in SNNs and spatial quantization in ANNs, based on which the minimization of the quantization error is transferred to quantized ANN training. With the minimization of the quantization error, we show that the sequential error is the primary cause of the accumulating error, which is addressed by introducing a signed IF neuron model and a layer-wise fine-tuning mechanism. Our method achieves state-of-the-art performance and low latency on various computer vision tasks, including image classification, object detection, and semantic segmentation. Codes are available at: https://github.com/yangfan-hu/Fast-SNN.","PeriodicalId":13426,"journal":{"name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","volume":" ","pages":""},"PeriodicalIF":20.8000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast-SNN: Fast Spiking Neural Network by Converting Quantized ANN\",\"authors\":\"Yang‐Zhi Hu, Qian Zheng, Xudong Jiang, Gang Pan\",\"doi\":\"10.48550/arXiv.2305.19868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks (SNNs) have shown advantages in computation and energy efficiency over traditional artificial neural networks (ANNs) thanks to their event-driven representations. SNNs also replace weight multiplications in ANNs with additions, which are more energy-efficient and less computationally intensive. However, it remains a challenge to train deep SNNs due to the discrete spiking function. A popular approach to circumvent this challenge is ANN-to-SNN conversion. However, due to the quantization error and accumulating error, it often requires lots of time steps (high inference latency) to achieve high performance, which negates SNN's advantages. To this end, this paper proposes Fast-SNN that achieves high performance with low latency. We demonstrate the equivalent mapping between temporal quantization in SNNs and spatial quantization in ANNs, based on which the minimization of the quantization error is transferred to quantized ANN training. With the minimization of the quantization error, we show that the sequential error is the primary cause of the accumulating error, which is addressed by introducing a signed IF neuron model and a layer-wise fine-tuning mechanism. Our method achieves state-of-the-art performance and low latency on various computer vision tasks, including image classification, object detection, and semantic segmentation. Codes are available at: https://github.com/yangfan-hu/Fast-SNN.\",\"PeriodicalId\":13426,\"journal\":{\"name\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":20.8000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Pattern Analysis and Machine Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2305.19868\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Pattern Analysis and Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.19868","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Fast-SNN: Fast Spiking Neural Network by Converting Quantized ANN
Spiking neural networks (SNNs) have shown advantages in computation and energy efficiency over traditional artificial neural networks (ANNs) thanks to their event-driven representations. SNNs also replace weight multiplications in ANNs with additions, which are more energy-efficient and less computationally intensive. However, it remains a challenge to train deep SNNs due to the discrete spiking function. A popular approach to circumvent this challenge is ANN-to-SNN conversion. However, due to the quantization error and accumulating error, it often requires lots of time steps (high inference latency) to achieve high performance, which negates SNN's advantages. To this end, this paper proposes Fast-SNN that achieves high performance with low latency. We demonstrate the equivalent mapping between temporal quantization in SNNs and spatial quantization in ANNs, based on which the minimization of the quantization error is transferred to quantized ANN training. With the minimization of the quantization error, we show that the sequential error is the primary cause of the accumulating error, which is addressed by introducing a signed IF neuron model and a layer-wise fine-tuning mechanism. Our method achieves state-of-the-art performance and low latency on various computer vision tasks, including image classification, object detection, and semantic segmentation. Codes are available at: https://github.com/yangfan-hu/Fast-SNN.
期刊介绍:
The IEEE Transactions on Pattern Analysis and Machine Intelligence publishes articles on all traditional areas of computer vision and image understanding, all traditional areas of pattern analysis and recognition, and selected areas of machine intelligence, with a particular emphasis on machine learning for pattern analysis. Areas such as techniques for visual search, document and handwriting analysis, medical image analysis, video and image sequence analysis, content-based retrieval of image and video, face and gesture recognition and relevant specialized hardware and/or software architectures are also covered.