{"title":"工程问题的全局最佳引导萤火虫算法","authors":"Mohsen Zare, Mojtaba Ghasemi, Amir Zahedi, Keyvan Golalipour, Soleiman Kadkhoda Mohammadi, Seyedali Mirjalili, Laith Abualigah","doi":"10.1007/s42235-023-00386-2","DOIUrl":null,"url":null,"abstract":"<div><p>The Firefly Algorithm (FA) is a highly efficient population-based optimization technique developed by mimicking the flashing behavior of fireflies when mating. This article proposes a method based on Differential Evolution (DE)/current-to-best/1 for enhancing the FA's movement process. The proposed modification increases the global search ability and the convergence rates while maintaining a balance between exploration and exploitation by deploying the global best solution. However, employing the best solution can lead to premature algorithm convergence, but this study handles this issue using a loop adjacent to the algorithm's main loop. Additionally, the suggested algorithm’s sensitivity to the alpha parameter is reduced compared to the original FA. The GbFA surpasses both the original and five-version of enhanced FAs in finding the optimal solution to 30 CEC2014 real parameter benchmark problems with all selected alpha values. Additionally, the CEC 2017 benchmark functions and the eight engineering optimization challenges are also utilized to evaluate GbFA’s efficacy and robustness on real-world problems against several enhanced algorithms. In all cases, GbFA provides the optimal result compared to other methods. Note that the source code of the GbFA algorithm is publicly available at https://www.optim-app.com/projects/gbfa.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"20 5","pages":"2359 - 2388"},"PeriodicalIF":4.9000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42235-023-00386-2.pdf","citationCount":"17","resultStr":"{\"title\":\"A Global Best-guided Firefly Algorithm for Engineering Problems\",\"authors\":\"Mohsen Zare, Mojtaba Ghasemi, Amir Zahedi, Keyvan Golalipour, Soleiman Kadkhoda Mohammadi, Seyedali Mirjalili, Laith Abualigah\",\"doi\":\"10.1007/s42235-023-00386-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Firefly Algorithm (FA) is a highly efficient population-based optimization technique developed by mimicking the flashing behavior of fireflies when mating. This article proposes a method based on Differential Evolution (DE)/current-to-best/1 for enhancing the FA's movement process. The proposed modification increases the global search ability and the convergence rates while maintaining a balance between exploration and exploitation by deploying the global best solution. However, employing the best solution can lead to premature algorithm convergence, but this study handles this issue using a loop adjacent to the algorithm's main loop. Additionally, the suggested algorithm’s sensitivity to the alpha parameter is reduced compared to the original FA. The GbFA surpasses both the original and five-version of enhanced FAs in finding the optimal solution to 30 CEC2014 real parameter benchmark problems with all selected alpha values. Additionally, the CEC 2017 benchmark functions and the eight engineering optimization challenges are also utilized to evaluate GbFA’s efficacy and robustness on real-world problems against several enhanced algorithms. In all cases, GbFA provides the optimal result compared to other methods. Note that the source code of the GbFA algorithm is publicly available at https://www.optim-app.com/projects/gbfa.</p></div>\",\"PeriodicalId\":614,\"journal\":{\"name\":\"Journal of Bionic Engineering\",\"volume\":\"20 5\",\"pages\":\"2359 - 2388\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42235-023-00386-2.pdf\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Bionic Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42235-023-00386-2\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-023-00386-2","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
A Global Best-guided Firefly Algorithm for Engineering Problems
The Firefly Algorithm (FA) is a highly efficient population-based optimization technique developed by mimicking the flashing behavior of fireflies when mating. This article proposes a method based on Differential Evolution (DE)/current-to-best/1 for enhancing the FA's movement process. The proposed modification increases the global search ability and the convergence rates while maintaining a balance between exploration and exploitation by deploying the global best solution. However, employing the best solution can lead to premature algorithm convergence, but this study handles this issue using a loop adjacent to the algorithm's main loop. Additionally, the suggested algorithm’s sensitivity to the alpha parameter is reduced compared to the original FA. The GbFA surpasses both the original and five-version of enhanced FAs in finding the optimal solution to 30 CEC2014 real parameter benchmark problems with all selected alpha values. Additionally, the CEC 2017 benchmark functions and the eight engineering optimization challenges are also utilized to evaluate GbFA’s efficacy and robustness on real-world problems against several enhanced algorithms. In all cases, GbFA provides the optimal result compared to other methods. Note that the source code of the GbFA algorithm is publicly available at https://www.optim-app.com/projects/gbfa.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.