{"title":"厚度对对称和非对称翼型声学特性影响的研究","authors":"Sujit Kumar, Priyanshu Mishra, S. Narayanan","doi":"10.1177/1475472X231152607","DOIUrl":null,"url":null,"abstract":"The present paper provides a detailed acoustic characterization of symmetric and asymmetric NACA airfoils for various thickness ratios to determine the best thickness ratio and geometry which provide lower acoustic radiations with respect to the standard NACA0010 airfoil. The studies are conducted for various t/c values of 0.12, 0.15 and 0.21, where t is the airfoil thickness and c is the airfoil chord. The far-field acoustic emissions are observed to decrease with increase in t/c ratios for both the symmetric and asymmetric airfoils. For all the t/c values and jet velocities studied, the asymmetric airfoils show higher noise reductions from mid to high frequencies as compared to the symmetric ones, which might be due to the reduced transverse velocity fluctuations as a result of the large distortions imparted to oncoming turbulent gust by the formation of the larger stagnation pressure zone. The symmetric airfoils show a maximum reduction up to 3 dB from mid to high frequencies while asymmetric ones show a reduction up to about 5 dB. An empirical expression is developed for the ΔOAPWL as a function of t/c only for both the symmetric and asymmetric airfoils, where ΔOAPWL is the overall sound power reduction level in dB. It reveals that the ΔOAPWL follow a second order polynomial for both the symmetric and asymmetric airfoils at all jet velocities studied. It is observed that thicker (i.e., t/c = 0.21) symmetric and asymmetric airfoils show lower acoustic radiations as compared to the thinner ones for all the emission angles. In general, it is observed that the thinner airfoils show higher directivity as compared thicker ones, albeit they show a common trait of downstream directivity. Further the highest directivity is seen at an emission angle of 67.5° for both the symmetric and asymmetric airfoils. Thus, the present study clearly demonstrates that the airfoils with higher t/c ratios could be considered as the best passive means for achieving substantial reductions of airfoil broadband noise over a wide range of frequencies.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"22 1","pages":"188 - 206"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations of thickness effects on the acoustic characteristics of symmetric and asymmetric airfoils\",\"authors\":\"Sujit Kumar, Priyanshu Mishra, S. Narayanan\",\"doi\":\"10.1177/1475472X231152607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present paper provides a detailed acoustic characterization of symmetric and asymmetric NACA airfoils for various thickness ratios to determine the best thickness ratio and geometry which provide lower acoustic radiations with respect to the standard NACA0010 airfoil. The studies are conducted for various t/c values of 0.12, 0.15 and 0.21, where t is the airfoil thickness and c is the airfoil chord. The far-field acoustic emissions are observed to decrease with increase in t/c ratios for both the symmetric and asymmetric airfoils. For all the t/c values and jet velocities studied, the asymmetric airfoils show higher noise reductions from mid to high frequencies as compared to the symmetric ones, which might be due to the reduced transverse velocity fluctuations as a result of the large distortions imparted to oncoming turbulent gust by the formation of the larger stagnation pressure zone. The symmetric airfoils show a maximum reduction up to 3 dB from mid to high frequencies while asymmetric ones show a reduction up to about 5 dB. An empirical expression is developed for the ΔOAPWL as a function of t/c only for both the symmetric and asymmetric airfoils, where ΔOAPWL is the overall sound power reduction level in dB. It reveals that the ΔOAPWL follow a second order polynomial for both the symmetric and asymmetric airfoils at all jet velocities studied. It is observed that thicker (i.e., t/c = 0.21) symmetric and asymmetric airfoils show lower acoustic radiations as compared to the thinner ones for all the emission angles. In general, it is observed that the thinner airfoils show higher directivity as compared thicker ones, albeit they show a common trait of downstream directivity. Further the highest directivity is seen at an emission angle of 67.5° for both the symmetric and asymmetric airfoils. Thus, the present study clearly demonstrates that the airfoils with higher t/c ratios could be considered as the best passive means for achieving substantial reductions of airfoil broadband noise over a wide range of frequencies.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":\"22 1\",\"pages\":\"188 - 206\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472X231152607\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X231152607","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Investigations of thickness effects on the acoustic characteristics of symmetric and asymmetric airfoils
The present paper provides a detailed acoustic characterization of symmetric and asymmetric NACA airfoils for various thickness ratios to determine the best thickness ratio and geometry which provide lower acoustic radiations with respect to the standard NACA0010 airfoil. The studies are conducted for various t/c values of 0.12, 0.15 and 0.21, where t is the airfoil thickness and c is the airfoil chord. The far-field acoustic emissions are observed to decrease with increase in t/c ratios for both the symmetric and asymmetric airfoils. For all the t/c values and jet velocities studied, the asymmetric airfoils show higher noise reductions from mid to high frequencies as compared to the symmetric ones, which might be due to the reduced transverse velocity fluctuations as a result of the large distortions imparted to oncoming turbulent gust by the formation of the larger stagnation pressure zone. The symmetric airfoils show a maximum reduction up to 3 dB from mid to high frequencies while asymmetric ones show a reduction up to about 5 dB. An empirical expression is developed for the ΔOAPWL as a function of t/c only for both the symmetric and asymmetric airfoils, where ΔOAPWL is the overall sound power reduction level in dB. It reveals that the ΔOAPWL follow a second order polynomial for both the symmetric and asymmetric airfoils at all jet velocities studied. It is observed that thicker (i.e., t/c = 0.21) symmetric and asymmetric airfoils show lower acoustic radiations as compared to the thinner ones for all the emission angles. In general, it is observed that the thinner airfoils show higher directivity as compared thicker ones, albeit they show a common trait of downstream directivity. Further the highest directivity is seen at an emission angle of 67.5° for both the symmetric and asymmetric airfoils. Thus, the present study clearly demonstrates that the airfoils with higher t/c ratios could be considered as the best passive means for achieving substantial reductions of airfoil broadband noise over a wide range of frequencies.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.