Sonam Patel, Isha Ranadive, I. Desai, S. Balakrishnan
{"title":"latipina Poecilia尾鳍的再生:对进行性组织形态发生的见解","authors":"Sonam Patel, Isha Ranadive, I. Desai, S. Balakrishnan","doi":"10.1080/15476278.2019.1633168","DOIUrl":null,"url":null,"abstract":"ABSTRACT Studies using fish fin as a model to understand the nuance of epimorphosis are gaining interest of lately. This study illustrates for the first time the daily changes in the tissue architecture of regenerating tail fin of Poecilia latipinna. Wound epithelium is formed within 24 hpa that eventually gets stratified into apical epithelial cap by 48 hpa. In the subsequent day, proliferating cells accumulate in front of each fin-ray marking the beginning of blastema. Distally these cells express signs of cartilage condensation by 4 dpa. However, ossification and subsequent transformation of actinotrichia to lepidotrichia was observed on 5 dpa. Subsequently, the regenerate grew at variable rate until it achieved the original size on 25 dpa. This result would serve as a worthwhile standard reference for further explorative studies that demand manipulation of a regulatory signal at a defined time point.","PeriodicalId":19596,"journal":{"name":"Organogenesis","volume":"15 1","pages":"35 - 42"},"PeriodicalIF":1.6000,"publicationDate":"2019-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15476278.2019.1633168","citationCount":"2","resultStr":"{\"title\":\"Regeneration of caudal fin in Poecilia latipinna: Insights into the progressive tissue morphogenesis\",\"authors\":\"Sonam Patel, Isha Ranadive, I. Desai, S. Balakrishnan\",\"doi\":\"10.1080/15476278.2019.1633168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Studies using fish fin as a model to understand the nuance of epimorphosis are gaining interest of lately. This study illustrates for the first time the daily changes in the tissue architecture of regenerating tail fin of Poecilia latipinna. Wound epithelium is formed within 24 hpa that eventually gets stratified into apical epithelial cap by 48 hpa. In the subsequent day, proliferating cells accumulate in front of each fin-ray marking the beginning of blastema. Distally these cells express signs of cartilage condensation by 4 dpa. However, ossification and subsequent transformation of actinotrichia to lepidotrichia was observed on 5 dpa. Subsequently, the regenerate grew at variable rate until it achieved the original size on 25 dpa. This result would serve as a worthwhile standard reference for further explorative studies that demand manipulation of a regulatory signal at a defined time point.\",\"PeriodicalId\":19596,\"journal\":{\"name\":\"Organogenesis\",\"volume\":\"15 1\",\"pages\":\"35 - 42\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2019-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15476278.2019.1633168\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organogenesis\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15476278.2019.1633168\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organogenesis","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15476278.2019.1633168","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Regeneration of caudal fin in Poecilia latipinna: Insights into the progressive tissue morphogenesis
ABSTRACT Studies using fish fin as a model to understand the nuance of epimorphosis are gaining interest of lately. This study illustrates for the first time the daily changes in the tissue architecture of regenerating tail fin of Poecilia latipinna. Wound epithelium is formed within 24 hpa that eventually gets stratified into apical epithelial cap by 48 hpa. In the subsequent day, proliferating cells accumulate in front of each fin-ray marking the beginning of blastema. Distally these cells express signs of cartilage condensation by 4 dpa. However, ossification and subsequent transformation of actinotrichia to lepidotrichia was observed on 5 dpa. Subsequently, the regenerate grew at variable rate until it achieved the original size on 25 dpa. This result would serve as a worthwhile standard reference for further explorative studies that demand manipulation of a regulatory signal at a defined time point.
期刊介绍:
Organogenesis is a peer-reviewed journal, available in print and online, that publishes significant advances on all aspects of organ development. The journal covers organogenesis in all multi-cellular organisms and also includes research into tissue engineering, artificial organs and organ substitutes.
The overriding criteria for publication in Organogenesis are originality, scientific merit and general interest. The audience of the journal consists primarily of researchers and advanced students of anatomy, developmental biology and tissue engineering.
The emphasis of the journal is on experimental papers (full-length and brief communications), but it will also publish reviews, hypotheses and commentaries. The Editors encourage the submission of addenda, which are essentially auto-commentaries on significant research recently published elsewhere with additional insights, new interpretations or speculations on a relevant topic. If you have interesting data or an original hypothesis about organ development or artificial organs, please send a pre-submission inquiry to the Editor-in-Chief. You will normally receive a reply within days. All manuscripts will be subjected to peer review, and accepted manuscripts will be posted to the electronic site of the journal immediately and will appear in print at the earliest opportunity thereafter.