{"title":"复合材料层压板中超声传播的数值模拟研究进展","authors":"Leandro Maio , Paul Fromme","doi":"10.1016/j.paerosci.2021.100791","DOIUrl":null,"url":null,"abstract":"<div><p><span>The growing use of composite materials for aerospace applications<span> has resulted in the need for quantitative methods to analyze composite components. Ultrasonic guided waves constitute the physical approach for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as </span></span>carbon fiber reinforced polymer<span><span><span><span> (CFRP) laminates. Ultrasound based NDE methods are commonly used in the aerospace field, but ultrasonic wave behavior can be complicated by the presence of material anisotropy, complex geometries (e.g., highly curved parts, stiffeners, and joints) and complex geometry defects. Common defects occurring in aerospace composites include </span>delaminations, porosity, and microcracking. Computational models of ultrasonic wave propagation in </span>CFRP composites<span> can be extremely valuable in designing practical NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. Physics based simulation tools that model ultrasonic wave propagation can aid in the development of optimized inspection methods and in the interpretation of NDE data. This paper presents a review of numerical methodologies for ultrasound and guided wave simulation in fiber reinforced composite laminates summarizing the relevant works to date, different methods, and their </span></span>respective applications.</span></p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"129 ","pages":"Article 100791"},"PeriodicalIF":11.5000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"On ultrasound propagation in composite laminates: advances in numerical simulation\",\"authors\":\"Leandro Maio , Paul Fromme\",\"doi\":\"10.1016/j.paerosci.2021.100791\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>The growing use of composite materials for aerospace applications<span> has resulted in the need for quantitative methods to analyze composite components. Ultrasonic guided waves constitute the physical approach for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as </span></span>carbon fiber reinforced polymer<span><span><span><span> (CFRP) laminates. Ultrasound based NDE methods are commonly used in the aerospace field, but ultrasonic wave behavior can be complicated by the presence of material anisotropy, complex geometries (e.g., highly curved parts, stiffeners, and joints) and complex geometry defects. Common defects occurring in aerospace composites include </span>delaminations, porosity, and microcracking. Computational models of ultrasonic wave propagation in </span>CFRP composites<span> can be extremely valuable in designing practical NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. Physics based simulation tools that model ultrasonic wave propagation can aid in the development of optimized inspection methods and in the interpretation of NDE data. This paper presents a review of numerical methodologies for ultrasound and guided wave simulation in fiber reinforced composite laminates summarizing the relevant works to date, different methods, and their </span></span>respective applications.</span></p></div>\",\"PeriodicalId\":54553,\"journal\":{\"name\":\"Progress in Aerospace Sciences\",\"volume\":\"129 \",\"pages\":\"Article 100791\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Aerospace Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376042121000932\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Aerospace Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376042121000932","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
On ultrasound propagation in composite laminates: advances in numerical simulation
The growing use of composite materials for aerospace applications has resulted in the need for quantitative methods to analyze composite components. Ultrasonic guided waves constitute the physical approach for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Ultrasound based NDE methods are commonly used in the aerospace field, but ultrasonic wave behavior can be complicated by the presence of material anisotropy, complex geometries (e.g., highly curved parts, stiffeners, and joints) and complex geometry defects. Common defects occurring in aerospace composites include delaminations, porosity, and microcracking. Computational models of ultrasonic wave propagation in CFRP composites can be extremely valuable in designing practical NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. Physics based simulation tools that model ultrasonic wave propagation can aid in the development of optimized inspection methods and in the interpretation of NDE data. This paper presents a review of numerical methodologies for ultrasound and guided wave simulation in fiber reinforced composite laminates summarizing the relevant works to date, different methods, and their respective applications.
期刊介绍:
"Progress in Aerospace Sciences" is a prestigious international review journal focusing on research in aerospace sciences and its applications in research organizations, industry, and universities. The journal aims to appeal to a wide range of readers and provide valuable information.
The primary content of the journal consists of specially commissioned review articles. These articles serve to collate the latest advancements in the expansive field of aerospace sciences. Unlike other journals, there are no restrictions on the length of papers. Authors are encouraged to furnish specialist readers with a clear and concise summary of recent work, while also providing enough detail for general aerospace readers to stay updated on developments in fields beyond their own expertise.