Hyunwook Kim, C. Lee, C. Shon, Hoon Moon, C. Chung
{"title":"海洋环境喷射混凝土用聚烯烃纤维混凝土的力学性能和氯离子渗透性","authors":"Hyunwook Kim, C. Lee, C. Shon, Hoon Moon, C. Chung","doi":"10.1080/24705314.2019.1692164","DOIUrl":null,"url":null,"abstract":"ABSTRACT This work investigates the mechanical performance and chloride ion penetration of base concrete for shotcrete that was reinforced with non-corroding polyolefin fibers for marine structure application. Test parameters included polyolefin fiber and conventional steel fiber, use of ground granulated blast furnace slag (GGBFS), and two different methods to evaluate chloride ion penetration property (ASTM C 1202 and NT-BUILD 492). Test results show that concrete containing polyolefin fiber had lower compressive strength, flexural strength, and toughness than those with steel fiber, but still met mechanical property criteria of shotcrete. While charge passed value of the concrete with polyolefin fiber was lower than that with steel fiber, the chloride ion diffusion coefficient of the concrete with polyolefin fiber was slightly higher than that with steel fiber. Concrete replaced with 40% GGBFS by mass of cement leaded to better mechanical performance and chloride ion penetration resistance than that without GGBFS regardless of both ASTM C 1202 and NT-Build 492 methods. Based on the test results, the use of polyolefin fibers has benefit as reinforcement of shotcrete used for marine structure application.","PeriodicalId":43844,"journal":{"name":"Journal of Structural Integrity and Maintenance","volume":"5 1","pages":"17 - 8"},"PeriodicalIF":3.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24705314.2019.1692164","citationCount":"3","resultStr":"{\"title\":\"Mechanical performance and chloride ion penetration of polyolefin fiber reinforced concrete designed for shotcreting at marine environment\",\"authors\":\"Hyunwook Kim, C. Lee, C. Shon, Hoon Moon, C. Chung\",\"doi\":\"10.1080/24705314.2019.1692164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This work investigates the mechanical performance and chloride ion penetration of base concrete for shotcrete that was reinforced with non-corroding polyolefin fibers for marine structure application. Test parameters included polyolefin fiber and conventional steel fiber, use of ground granulated blast furnace slag (GGBFS), and two different methods to evaluate chloride ion penetration property (ASTM C 1202 and NT-BUILD 492). Test results show that concrete containing polyolefin fiber had lower compressive strength, flexural strength, and toughness than those with steel fiber, but still met mechanical property criteria of shotcrete. While charge passed value of the concrete with polyolefin fiber was lower than that with steel fiber, the chloride ion diffusion coefficient of the concrete with polyolefin fiber was slightly higher than that with steel fiber. Concrete replaced with 40% GGBFS by mass of cement leaded to better mechanical performance and chloride ion penetration resistance than that without GGBFS regardless of both ASTM C 1202 and NT-Build 492 methods. Based on the test results, the use of polyolefin fibers has benefit as reinforcement of shotcrete used for marine structure application.\",\"PeriodicalId\":43844,\"journal\":{\"name\":\"Journal of Structural Integrity and Maintenance\",\"volume\":\"5 1\",\"pages\":\"17 - 8\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24705314.2019.1692164\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Structural Integrity and Maintenance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24705314.2019.1692164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Integrity and Maintenance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705314.2019.1692164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 3
摘要
摘要:本文研究了船用结构用无腐蚀聚烯烃纤维喷射混凝土基层混凝土的力学性能和氯离子渗透性能。测试参数包括聚烯烃纤维和常规钢纤维,使用磨粒高炉渣(GGBFS),以及两种不同的方法来评估氯离子渗透性能(ASTM C 1202和NT-BUILD 492)。试验结果表明,含聚烯烃纤维混凝土的抗压强度、抗弯强度和韧性均低于含钢纤维混凝土,但仍符合喷射混凝土的力学性能标准。掺有聚烯烃纤维的混凝土电荷通过值低于掺有钢纤维的混凝土,但氯离子扩散系数略高于掺有钢纤维的混凝土。无论采用ASTM C 1202和NT-Build 492方法,用40% GGBFS取代水泥质量的混凝土比不使用GGBFS的混凝土具有更好的机械性能和抗氯离子渗透性能。试验结果表明,聚烯烃纤维作为海洋结构喷射混凝土的加固材料具有一定的优越性。
Mechanical performance and chloride ion penetration of polyolefin fiber reinforced concrete designed for shotcreting at marine environment
ABSTRACT This work investigates the mechanical performance and chloride ion penetration of base concrete for shotcrete that was reinforced with non-corroding polyolefin fibers for marine structure application. Test parameters included polyolefin fiber and conventional steel fiber, use of ground granulated blast furnace slag (GGBFS), and two different methods to evaluate chloride ion penetration property (ASTM C 1202 and NT-BUILD 492). Test results show that concrete containing polyolefin fiber had lower compressive strength, flexural strength, and toughness than those with steel fiber, but still met mechanical property criteria of shotcrete. While charge passed value of the concrete with polyolefin fiber was lower than that with steel fiber, the chloride ion diffusion coefficient of the concrete with polyolefin fiber was slightly higher than that with steel fiber. Concrete replaced with 40% GGBFS by mass of cement leaded to better mechanical performance and chloride ion penetration resistance than that without GGBFS regardless of both ASTM C 1202 and NT-Build 492 methods. Based on the test results, the use of polyolefin fibers has benefit as reinforcement of shotcrete used for marine structure application.