社会数据基金会模式:通过数据信托服务促进卫生和社会保健转型

IF 1.8 Q3 PUBLIC ADMINISTRATION Data & policy Pub Date : 2022-02-10 DOI:10.1017/dap.2022.1
M. Boniface, L. Carmichael, W. Hall, B. Pickering, Sophie Stalla-Bourdillon, Steve Taylor
{"title":"社会数据基金会模式:通过数据信托服务促进卫生和社会保健转型","authors":"M. Boniface, L. Carmichael, W. Hall, B. Pickering, Sophie Stalla-Bourdillon, Steve Taylor","doi":"10.1017/dap.2022.1","DOIUrl":null,"url":null,"abstract":"Abstract Turning the wealth of health and social data into insights to promote better public health, while enabling more effective personalized care, is critically important for society. In particular, social determinants of health have a significant impact on individual health, well-being, and inequalities in health. However, concerns around accessing and processing such sensitive data, and linking different datasets, involve significant challenges, not least to demonstrate trustworthiness to all stakeholders. Emerging datatrust services provide an opportunity to address key barriers to health and social care data linkage schemes, specifically a loss of control experienced by data providers, including the difficulty to maintain a remote reidentification risk over time, and the challenge of establishing and maintaining a social license. Datatrust services are a sociotechnical evolution that advances databases and data management systems, and brings together stakeholder-sensitive data governance mechanisms with data services to create a trusted research environment. In this article, we explore the requirements for datatrust services, a proposed implementation—the Social Data Foundation, and an illustrative test case. Moving forward, such an approach would help incentivize, accelerate, and join up the sharing of regulated data, and the use of generated outputs safely amongst stakeholders, including healthcare providers, social care providers, researchers, public health authorities, and citizens.","PeriodicalId":93427,"journal":{"name":"Data & policy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Social Data Foundation model: Facilitating health and social care transformation through datatrust services\",\"authors\":\"M. Boniface, L. Carmichael, W. Hall, B. Pickering, Sophie Stalla-Bourdillon, Steve Taylor\",\"doi\":\"10.1017/dap.2022.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Turning the wealth of health and social data into insights to promote better public health, while enabling more effective personalized care, is critically important for society. In particular, social determinants of health have a significant impact on individual health, well-being, and inequalities in health. However, concerns around accessing and processing such sensitive data, and linking different datasets, involve significant challenges, not least to demonstrate trustworthiness to all stakeholders. Emerging datatrust services provide an opportunity to address key barriers to health and social care data linkage schemes, specifically a loss of control experienced by data providers, including the difficulty to maintain a remote reidentification risk over time, and the challenge of establishing and maintaining a social license. Datatrust services are a sociotechnical evolution that advances databases and data management systems, and brings together stakeholder-sensitive data governance mechanisms with data services to create a trusted research environment. In this article, we explore the requirements for datatrust services, a proposed implementation—the Social Data Foundation, and an illustrative test case. Moving forward, such an approach would help incentivize, accelerate, and join up the sharing of regulated data, and the use of generated outputs safely amongst stakeholders, including healthcare providers, social care providers, researchers, public health authorities, and citizens.\",\"PeriodicalId\":93427,\"journal\":{\"name\":\"Data & policy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data & policy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/dap.2022.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC ADMINISTRATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data & policy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/dap.2022.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC ADMINISTRATION","Score":null,"Total":0}
引用次数: 3

摘要

摘要将丰富的健康和社会数据转化为见解,以促进更好的公共卫生,同时实现更有效的个性化护理,这对社会至关重要。特别是,健康的社会决定因素对个人健康、福祉和健康不平等有重大影响。然而,对访问和处理此类敏感数据以及链接不同数据集的担忧涉及重大挑战,尤其是在向所有利益相关者证明可信度方面。新兴的数据信任服务为解决健康和社会护理数据链接计划的关键障碍提供了机会,特别是数据提供商所经历的失控,包括随着时间的推移难以维持远程重新识别风险,以及建立和维护社会许可证的挑战。数据信任服务是一种社会技术发展,它推动了数据库和数据管理系统的发展,并将利益相关者敏感的数据治理机制与数据服务结合起来,创造了一个值得信赖的研究环境。在本文中,我们探讨了数据信任服务的需求、一个拟议的实现——社会数据基金会,以及一个示例性的测试用例。今后,这种方法将有助于激励、加速和联合利益相关者共享受监管的数据,并安全地使用产生的产出,包括医疗保健提供者、社会护理提供者、研究人员、公共卫生当局和公民。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Social Data Foundation model: Facilitating health and social care transformation through datatrust services
Abstract Turning the wealth of health and social data into insights to promote better public health, while enabling more effective personalized care, is critically important for society. In particular, social determinants of health have a significant impact on individual health, well-being, and inequalities in health. However, concerns around accessing and processing such sensitive data, and linking different datasets, involve significant challenges, not least to demonstrate trustworthiness to all stakeholders. Emerging datatrust services provide an opportunity to address key barriers to health and social care data linkage schemes, specifically a loss of control experienced by data providers, including the difficulty to maintain a remote reidentification risk over time, and the challenge of establishing and maintaining a social license. Datatrust services are a sociotechnical evolution that advances databases and data management systems, and brings together stakeholder-sensitive data governance mechanisms with data services to create a trusted research environment. In this article, we explore the requirements for datatrust services, a proposed implementation—the Social Data Foundation, and an illustrative test case. Moving forward, such an approach would help incentivize, accelerate, and join up the sharing of regulated data, and the use of generated outputs safely amongst stakeholders, including healthcare providers, social care providers, researchers, public health authorities, and citizens.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Determinants for university students’ location data sharing with public institutions during COVID-19: The Italian case Bus Rapid Transit: End of trend in Latin America? Accelerating and enhancing the generation of socioeconomic data to inform forced displacement policy and response “That is why users do not understand the maps we make for them”: Cartographic gaps between experts and domestic workers and the Right to the City Analysis of spatial–temporal validation patterns in Fortaleza’s public transport systems: a data mining approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1