基于机器视觉的植物表型特征估计与分类研究综述

IF 7.7 Q1 AGRICULTURE, MULTIDISCIPLINARY Information Processing in Agriculture Pub Date : 2023-03-01 DOI:10.1016/j.inpa.2021.02.006
Shrikrishna Kolhar , Jayant Jagtap
{"title":"基于机器视觉的植物表型特征估计与分类研究综述","authors":"Shrikrishna Kolhar ,&nbsp;Jayant Jagtap","doi":"10.1016/j.inpa.2021.02.006","DOIUrl":null,"url":null,"abstract":"<div><p>Today there is a rapid development taking place in phenotyping of plants using non-destructive image based machine vision techniques. Machine vision based plant phenotyping ranges from single plant trait estimation to broad assessment of crop canopy for thousands of plants in the field. Plant phenotyping systems either use single imaging method or integrative approach signifying simultaneous use of some of the imaging techniques like visible red, green and blue (RGB) imaging, thermal imaging, chlorophyll fluorescence imaging (CFIM), hyperspectral imaging, 3-dimensional (3-D) imaging or high resolution volumetric imaging. This paper provides an overview of imaging techniques and their applications in the field of plant phenotyping. This paper presents a comprehensive survey on recent machine vision methods for plant trait estimation and classification. In this paper, information about publicly available datasets is provided for uniform comparison among the state-of-the-art phenotyping methods. This paper also presents future research directions related to the use of deep learning based machine vision algorithms for structural (2-D and 3-D), physiological and temporal trait estimation, and classification studies in plants.</p></div>","PeriodicalId":53443,"journal":{"name":"Information Processing in Agriculture","volume":"10 1","pages":"Pages 114-135"},"PeriodicalIF":7.7000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.inpa.2021.02.006","citationCount":"30","resultStr":"{\"title\":\"Plant trait estimation and classification studies in plant phenotyping using machine vision – A review\",\"authors\":\"Shrikrishna Kolhar ,&nbsp;Jayant Jagtap\",\"doi\":\"10.1016/j.inpa.2021.02.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Today there is a rapid development taking place in phenotyping of plants using non-destructive image based machine vision techniques. Machine vision based plant phenotyping ranges from single plant trait estimation to broad assessment of crop canopy for thousands of plants in the field. Plant phenotyping systems either use single imaging method or integrative approach signifying simultaneous use of some of the imaging techniques like visible red, green and blue (RGB) imaging, thermal imaging, chlorophyll fluorescence imaging (CFIM), hyperspectral imaging, 3-dimensional (3-D) imaging or high resolution volumetric imaging. This paper provides an overview of imaging techniques and their applications in the field of plant phenotyping. This paper presents a comprehensive survey on recent machine vision methods for plant trait estimation and classification. In this paper, information about publicly available datasets is provided for uniform comparison among the state-of-the-art phenotyping methods. This paper also presents future research directions related to the use of deep learning based machine vision algorithms for structural (2-D and 3-D), physiological and temporal trait estimation, and classification studies in plants.</p></div>\",\"PeriodicalId\":53443,\"journal\":{\"name\":\"Information Processing in Agriculture\",\"volume\":\"10 1\",\"pages\":\"Pages 114-135\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.inpa.2021.02.006\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing in Agriculture\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214317321000238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing in Agriculture","FirstCategoryId":"1091","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214317321000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 30

摘要

目前,基于非破坏性图像的机器视觉技术在植物表型分析方面发展迅速。基于机器视觉的植物表型分析范围从单株性状估计到田间数千株作物冠层的广泛评估。植物表型系统要么使用单一成像方法,要么使用综合成像方法,这意味着同时使用一些成像技术,如可见红、绿、蓝(RGB)成像、热成像、叶绿素荧光成像(CFIM)、高光谱成像、三维成像或高分辨率体积成像。本文综述了成像技术及其在植物表型研究中的应用。本文综述了近年来用于植物性状估计和分类的机器视觉方法。在本文中,提供了有关公开可用数据集的信息,以便在最先进的表型方法之间进行统一比较。本文还提出了基于深度学习的机器视觉算法在植物结构(二维和三维)、生理和时间性状估计以及分类研究中的应用的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plant trait estimation and classification studies in plant phenotyping using machine vision – A review

Today there is a rapid development taking place in phenotyping of plants using non-destructive image based machine vision techniques. Machine vision based plant phenotyping ranges from single plant trait estimation to broad assessment of crop canopy for thousands of plants in the field. Plant phenotyping systems either use single imaging method or integrative approach signifying simultaneous use of some of the imaging techniques like visible red, green and blue (RGB) imaging, thermal imaging, chlorophyll fluorescence imaging (CFIM), hyperspectral imaging, 3-dimensional (3-D) imaging or high resolution volumetric imaging. This paper provides an overview of imaging techniques and their applications in the field of plant phenotyping. This paper presents a comprehensive survey on recent machine vision methods for plant trait estimation and classification. In this paper, information about publicly available datasets is provided for uniform comparison among the state-of-the-art phenotyping methods. This paper also presents future research directions related to the use of deep learning based machine vision algorithms for structural (2-D and 3-D), physiological and temporal trait estimation, and classification studies in plants.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Processing in Agriculture
Information Processing in Agriculture Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
21.10
自引率
0.00%
发文量
80
期刊介绍: Information Processing in Agriculture (IPA) was established in 2013 and it encourages the development towards a science and technology of information processing in agriculture, through the following aims: • Promote the use of knowledge and methods from the information processing technologies in the agriculture; • Illustrate the experiences and publications of the institutes, universities and government, and also the profitable technologies on agriculture; • Provide opportunities and platform for exchanging knowledge, strategies and experiences among the researchers in information processing worldwide; • Promote and encourage interactions among agriculture Scientists, Meteorologists, Biologists (Pathologists/Entomologists) with IT Professionals and other stakeholders to develop and implement methods, techniques, tools, and issues related to information processing technology in agriculture; • Create and promote expert groups for development of agro-meteorological databases, crop and livestock modelling and applications for development of crop performance based decision support system. Topics of interest include, but are not limited to: • Smart Sensor and Wireless Sensor Network • Remote Sensing • Simulation, Optimization, Modeling and Automatic Control • Decision Support Systems, Intelligent Systems and Artificial Intelligence • Computer Vision and Image Processing • Inspection and Traceability for Food Quality • Precision Agriculture and Intelligent Instrument • The Internet of Things and Cloud Computing • Big Data and Data Mining
期刊最新文献
Editorial Board Artificial intelligence solutions to reduce information asymmetry for Colombian cocoa small-scale farmers Automated detection of sugarcane crop lines from UAV images using deep learning Detection and counting method of juvenile abalones based on improved SSD network Constrained temperature and relative humidity predictive control: Agricultural greenhouse case of study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1