G. Kodeeswara Kumaran, P. Rajesh, Sureshkumar Kumaravel, G. Irusapparajan
{"title":"基于UPFC同步频率控制器和储能系统的两区电力系统稳定性优化分析","authors":"G. Kodeeswara Kumaran, P. Rajesh, Sureshkumar Kumaravel, G. Irusapparajan","doi":"10.1556/1848.2022.00538","DOIUrl":null,"url":null,"abstract":"An optimization approach for two-area power system with Unified Power Flow Controller (UPFC) is proposed in this paper. The proposed method is the Atomic Orbital Search (AOS) approach. The proposed approach is applied to achieve full utilization of UPFC and keeps the parameters uncertain. The multivariable PI controller is utilized to control the system controller and eliminates the negative interaction of the controllers. The proposed approach combines the two subsystems by converting algebraic subsystem using differential approximation, which leads to a nonlinear system. The proposed approach provides efficient voltage regulation and quicker damping of inter-area mode oscillations. The proposed UPFC controller eliminates generator oscillation and fault condition, which guarantee the stability of the system as well as provides dynamic power flow control under the tie-line. At last, the proposed method is simulated on MATLAB platform and compared with existing methods. From this comparison, it is shown that the proposed approach provides less oscillation than the existing approach.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-area power system stability analysis by frequency controller with UPFC synchronization and energy storage systems by optimization approach\",\"authors\":\"G. Kodeeswara Kumaran, P. Rajesh, Sureshkumar Kumaravel, G. Irusapparajan\",\"doi\":\"10.1556/1848.2022.00538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An optimization approach for two-area power system with Unified Power Flow Controller (UPFC) is proposed in this paper. The proposed method is the Atomic Orbital Search (AOS) approach. The proposed approach is applied to achieve full utilization of UPFC and keeps the parameters uncertain. The multivariable PI controller is utilized to control the system controller and eliminates the negative interaction of the controllers. The proposed approach combines the two subsystems by converting algebraic subsystem using differential approximation, which leads to a nonlinear system. The proposed approach provides efficient voltage regulation and quicker damping of inter-area mode oscillations. The proposed UPFC controller eliminates generator oscillation and fault condition, which guarantee the stability of the system as well as provides dynamic power flow control under the tie-line. At last, the proposed method is simulated on MATLAB platform and compared with existing methods. From this comparison, it is shown that the proposed approach provides less oscillation than the existing approach.\",\"PeriodicalId\":37508,\"journal\":{\"name\":\"International Review of Applied Sciences and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Review of Applied Sciences and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1556/1848.2022.00538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2022.00538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Two-area power system stability analysis by frequency controller with UPFC synchronization and energy storage systems by optimization approach
An optimization approach for two-area power system with Unified Power Flow Controller (UPFC) is proposed in this paper. The proposed method is the Atomic Orbital Search (AOS) approach. The proposed approach is applied to achieve full utilization of UPFC and keeps the parameters uncertain. The multivariable PI controller is utilized to control the system controller and eliminates the negative interaction of the controllers. The proposed approach combines the two subsystems by converting algebraic subsystem using differential approximation, which leads to a nonlinear system. The proposed approach provides efficient voltage regulation and quicker damping of inter-area mode oscillations. The proposed UPFC controller eliminates generator oscillation and fault condition, which guarantee the stability of the system as well as provides dynamic power flow control under the tie-line. At last, the proposed method is simulated on MATLAB platform and compared with existing methods. From this comparison, it is shown that the proposed approach provides less oscillation than the existing approach.
期刊介绍:
International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.