{"title":"Zr-HMS催化剂上乙醇和乙醛选择性转化1,3-丁二烯的研究","authors":"Shuying Li, Bin Huang, Changzi Jin, Rui Wang, Heng Jiang, Guang-Sheng Yang, Shengjun Huang","doi":"10.1007/s10563-023-09390-2","DOIUrl":null,"url":null,"abstract":"<div><p>The conversion of ethanol and acetaldehyde to 1,3-butadiene has been an emerging process to produce key chemicals. The preparation of highly efficient catalysts and the understanding of reaction mechanism are current research priority. Herein, mesoporous silica framework confining zirconia (Zr-HMS) was prepared and act as catalyst for 1,3-butadiene production from ethanol and acetaldehyde. The prepared catalysts were characterized by Low-angle X-ray powder diffraction, transmission electron microscopy, N<sub>2</sub> physical adsorption-desorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and UV–vis spectra. It has been shown that the Zr-HMS exhibits similar textural properties to supported catalyst (ZrO<sub>2</sub>/HMS). However, regardless of their comparable activities, higher 1,3-butadiene selectivity is obtained over Zr–HMS, which can be due to the different active zirconia species in two catalysts. Mesoporous framework confining character of Zr-HMS can achieve uniformly dispersed zirconia species. Further investigation toward the reaction process has presented new viewpoints for formation and consumption of some typical intermediates and byproducts, which will help to understand the reaction mechanism and construct efficient catalysts for conversion of ethanol and acetaldehyde to 1,3-butadiene.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"27 3","pages":"207 - 216"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selective Conversion of Ethanol and Acetaldehyde to 1,3-Butadiene Over Zr-HMS Catalysts\",\"authors\":\"Shuying Li, Bin Huang, Changzi Jin, Rui Wang, Heng Jiang, Guang-Sheng Yang, Shengjun Huang\",\"doi\":\"10.1007/s10563-023-09390-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The conversion of ethanol and acetaldehyde to 1,3-butadiene has been an emerging process to produce key chemicals. The preparation of highly efficient catalysts and the understanding of reaction mechanism are current research priority. Herein, mesoporous silica framework confining zirconia (Zr-HMS) was prepared and act as catalyst for 1,3-butadiene production from ethanol and acetaldehyde. The prepared catalysts were characterized by Low-angle X-ray powder diffraction, transmission electron microscopy, N<sub>2</sub> physical adsorption-desorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and UV–vis spectra. It has been shown that the Zr-HMS exhibits similar textural properties to supported catalyst (ZrO<sub>2</sub>/HMS). However, regardless of their comparable activities, higher 1,3-butadiene selectivity is obtained over Zr–HMS, which can be due to the different active zirconia species in two catalysts. Mesoporous framework confining character of Zr-HMS can achieve uniformly dispersed zirconia species. Further investigation toward the reaction process has presented new viewpoints for formation and consumption of some typical intermediates and byproducts, which will help to understand the reaction mechanism and construct efficient catalysts for conversion of ethanol and acetaldehyde to 1,3-butadiene.</p></div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":\"27 3\",\"pages\":\"207 - 216\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-023-09390-2\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-023-09390-2","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Selective Conversion of Ethanol and Acetaldehyde to 1,3-Butadiene Over Zr-HMS Catalysts
The conversion of ethanol and acetaldehyde to 1,3-butadiene has been an emerging process to produce key chemicals. The preparation of highly efficient catalysts and the understanding of reaction mechanism are current research priority. Herein, mesoporous silica framework confining zirconia (Zr-HMS) was prepared and act as catalyst for 1,3-butadiene production from ethanol and acetaldehyde. The prepared catalysts were characterized by Low-angle X-ray powder diffraction, transmission electron microscopy, N2 physical adsorption-desorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and UV–vis spectra. It has been shown that the Zr-HMS exhibits similar textural properties to supported catalyst (ZrO2/HMS). However, regardless of their comparable activities, higher 1,3-butadiene selectivity is obtained over Zr–HMS, which can be due to the different active zirconia species in two catalysts. Mesoporous framework confining character of Zr-HMS can achieve uniformly dispersed zirconia species. Further investigation toward the reaction process has presented new viewpoints for formation and consumption of some typical intermediates and byproducts, which will help to understand the reaction mechanism and construct efficient catalysts for conversion of ethanol and acetaldehyde to 1,3-butadiene.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.