水下船体清洗调度模型驱动决策支持系统的开发

IF 3.9 4区 工程技术 Q1 ENGINEERING, MARINE Brodogradnja Pub Date : 2022-07-01 DOI:10.21278/brod73302
A. Dinariyana, Pande Pramudya Deva, I. Ariana
{"title":"水下船体清洗调度模型驱动决策支持系统的开发","authors":"A. Dinariyana, Pande Pramudya Deva, I. Ariana","doi":"10.21278/brod73302","DOIUrl":null,"url":null,"abstract":"Maritime industries are constantly searching for a method to enhance ship efficiency, with increasing concern about the environmental impact and rising fuel prices. Marine biofouling is one of the factors that increase ship fuel consumption. However, removing the fouling of the ship requires effort for hull maintenance. Due to the trade-off between conducting maintenance and performance degradation, this study presents the development of a Model-Driven Decision Support System (MD-DSS) to predict the optimum time for underwater hull cleaning for biofouling management. Five stages (sub-models) are employed to develop a DSS, namely: ship resistance estimation, estimation of additional resistance due to biofouling, an iterative-based method for determining the best time to conduct the hull cleaning, and an analysis report. The implemented algorithm was validated by comparing its result with a manually scheduled maintenance date. The DSS is able to determine the best time (date) for maintenance in all given scenarios. By giving two scenarios of different maintenance costs and different fuel prices, the optimisation results produce the same number of maintenances. Within 60 months, four to five hull cleanings are required. It is also found that when the optimal number of maintenances is known, then increasing this number will not have any impact on reducing the hull cleaning costs because the reduction in fouling does not significantly reduce the costs incurred for maintenance. During several trials of the DSS, it is shown that the system can generate maintenance schedules for different time intervals of ship operation within an acceptable time. It takes approximately 52 minutes, 12 minutes, and 5 minutes consecutively to determine the maintenance schedules for ship operation intervals of 5 years, 2.5 years, and 1 year.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"DEVELOPMENT OF MODEL-DRIVEN DECISION SUPPORT SYSTEM TO SCHEDULE UNDERWATER HULL CLEANING\",\"authors\":\"A. Dinariyana, Pande Pramudya Deva, I. Ariana\",\"doi\":\"10.21278/brod73302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Maritime industries are constantly searching for a method to enhance ship efficiency, with increasing concern about the environmental impact and rising fuel prices. Marine biofouling is one of the factors that increase ship fuel consumption. However, removing the fouling of the ship requires effort for hull maintenance. Due to the trade-off between conducting maintenance and performance degradation, this study presents the development of a Model-Driven Decision Support System (MD-DSS) to predict the optimum time for underwater hull cleaning for biofouling management. Five stages (sub-models) are employed to develop a DSS, namely: ship resistance estimation, estimation of additional resistance due to biofouling, an iterative-based method for determining the best time to conduct the hull cleaning, and an analysis report. The implemented algorithm was validated by comparing its result with a manually scheduled maintenance date. The DSS is able to determine the best time (date) for maintenance in all given scenarios. By giving two scenarios of different maintenance costs and different fuel prices, the optimisation results produce the same number of maintenances. Within 60 months, four to five hull cleanings are required. It is also found that when the optimal number of maintenances is known, then increasing this number will not have any impact on reducing the hull cleaning costs because the reduction in fouling does not significantly reduce the costs incurred for maintenance. During several trials of the DSS, it is shown that the system can generate maintenance schedules for different time intervals of ship operation within an acceptable time. It takes approximately 52 minutes, 12 minutes, and 5 minutes consecutively to determine the maintenance schedules for ship operation intervals of 5 years, 2.5 years, and 1 year.\",\"PeriodicalId\":55594,\"journal\":{\"name\":\"Brodogradnja\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brodogradnja\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.21278/brod73302\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brodogradnja","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.21278/brod73302","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 6

摘要

随着对环境影响的日益关注和燃料价格的不断上涨,海运业一直在寻找提高船舶效率的方法。海洋生物污染是增加船舶燃料消耗的因素之一。然而,清除船舶的污垢需要船体维护的努力。由于进行维护和性能下降之间的权衡,本研究提出了一个模型驱动的决策支持系统(MD-DSS)的开发,以预测水下船体清洁的最佳时间,以进行生物污垢管理。采用五个阶段(子模型)来开发DSS,分别是:船舶阻力估计、生物污垢附加阻力估计、基于迭代的最佳船体清洗时间确定方法和分析报告。通过将其结果与人工计划的维护日期进行比较,验证了所实现的算法。DSS能够在所有给定的场景中确定维护的最佳时间(日期)。通过给出不同维护成本和不同燃料价格的两种情况,优化结果产生相同的维护次数。在60个月内,需要进行4到5次船体清洗。还发现,当已知最佳维护次数时,增加该次数对降低船体清洁成本不会产生任何影响,因为污垢的减少并没有显着降低维护成本。试验结果表明,该系统能够在可接受的时间内生成船舶运行不同时间间隔的维修计划。船舶运行周期为5年、2.5年、1年,分别需要52分钟、12分钟、5分钟来确定维修计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DEVELOPMENT OF MODEL-DRIVEN DECISION SUPPORT SYSTEM TO SCHEDULE UNDERWATER HULL CLEANING
Maritime industries are constantly searching for a method to enhance ship efficiency, with increasing concern about the environmental impact and rising fuel prices. Marine biofouling is one of the factors that increase ship fuel consumption. However, removing the fouling of the ship requires effort for hull maintenance. Due to the trade-off between conducting maintenance and performance degradation, this study presents the development of a Model-Driven Decision Support System (MD-DSS) to predict the optimum time for underwater hull cleaning for biofouling management. Five stages (sub-models) are employed to develop a DSS, namely: ship resistance estimation, estimation of additional resistance due to biofouling, an iterative-based method for determining the best time to conduct the hull cleaning, and an analysis report. The implemented algorithm was validated by comparing its result with a manually scheduled maintenance date. The DSS is able to determine the best time (date) for maintenance in all given scenarios. By giving two scenarios of different maintenance costs and different fuel prices, the optimisation results produce the same number of maintenances. Within 60 months, four to five hull cleanings are required. It is also found that when the optimal number of maintenances is known, then increasing this number will not have any impact on reducing the hull cleaning costs because the reduction in fouling does not significantly reduce the costs incurred for maintenance. During several trials of the DSS, it is shown that the system can generate maintenance schedules for different time intervals of ship operation within an acceptable time. It takes approximately 52 minutes, 12 minutes, and 5 minutes consecutively to determine the maintenance schedules for ship operation intervals of 5 years, 2.5 years, and 1 year.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brodogradnja
Brodogradnja ENGINEERING, MARINE-
CiteScore
4.30
自引率
38.90%
发文量
33
审稿时长
>12 weeks
期刊介绍: The journal is devoted to multidisciplinary researches in the fields of theoretical and experimental naval architecture and oceanology as well as to challenging problems in shipbuilding as well shipping, offshore and related shipbuilding industries worldwide. The aim of the journal is to integrate technical interests in shipbuilding, ocean engineering, sea and ocean shipping, inland navigation and intermodal transportation as well as environmental issues, overall safety, objects for wind, marine and hydrokinetic renewable energy production and sustainable transportation development at seas, oceans and inland waterways in relations to shipbuilding and naval architecture. The journal focuses on hydrodynamics, structures, reliability, materials, construction, design, optimization, production engineering, building and organization of building, project management, repair and maintenance planning, information systems in shipyards, quality assurance as well as outfitting, powering, autonomous marine vehicles, power plants and equipment onboard. Brodogradnja publishes original scientific papers, review papers, preliminary communications and important professional papers relevant in engineering and technology.
期刊最新文献
Probabilistic evaluation of dynamic positioning operability with a Quasi-Monte Carlo approach Influence of scale effect on flow field offset for ships in confined waters On the propeller wake evolution using large eddy simulations and physics-informed space-time decomposition Small Modular AUV Based on 3D Printing Technology: Design, Implementation and Experimental Validation Analysis of damage to ship personnel in different seated postures by near-field underwater explosions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1