Hao Hu, Xiang Li, Minghu Ha, Xiaosheng Wang, C. Shang, Qiang Shen
{"title":"具有重量变化风险的危险品运输多车场车辆路线规划","authors":"Hao Hu, Xiang Li, Minghu Ha, Xiaosheng Wang, C. Shang, Qiang Shen","doi":"10.1080/21680566.2023.2185498","DOIUrl":null,"url":null,"abstract":"Reasonable transportation risk models are conducive to achieving the green reform of hazardous material logistics industry. However, existing multi-depot vehicle routing programming models for hazardous material transportation may result in overemphasis on either global risk or local risk. To overcome such shortcomings, we develop two novel two-stage programming models that consider weight variety in risk measures. The ordered weighted averaging risk-based model effectively reduces both the global risk and the maximum local risk with respect to the weight distribution in the aggregation process of local risks, and the state variable weight risk-based model helps reduce the global risk and the maximum local risk based on the variable weights associated with local risk values. Furthermore, we design a constraint reduction mechanism and a variable neighbourhood search-based hybrid parallel genetic algorithm to handle the proposed models, such that they could rapidly reach the near-optimal solution using multiplication processors. Experimental investigations demonstrate that the proposed models achieve a good balance between overall risk and local risk, and proposed algorithm can obtain a satisfactory approximate solution within an acceptable time frame.","PeriodicalId":48872,"journal":{"name":"Transportmetrica B-Transport Dynamics","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-depot vehicle routing programming for hazmat transportation with weight variation risk\",\"authors\":\"Hao Hu, Xiang Li, Minghu Ha, Xiaosheng Wang, C. Shang, Qiang Shen\",\"doi\":\"10.1080/21680566.2023.2185498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reasonable transportation risk models are conducive to achieving the green reform of hazardous material logistics industry. However, existing multi-depot vehicle routing programming models for hazardous material transportation may result in overemphasis on either global risk or local risk. To overcome such shortcomings, we develop two novel two-stage programming models that consider weight variety in risk measures. The ordered weighted averaging risk-based model effectively reduces both the global risk and the maximum local risk with respect to the weight distribution in the aggregation process of local risks, and the state variable weight risk-based model helps reduce the global risk and the maximum local risk based on the variable weights associated with local risk values. Furthermore, we design a constraint reduction mechanism and a variable neighbourhood search-based hybrid parallel genetic algorithm to handle the proposed models, such that they could rapidly reach the near-optimal solution using multiplication processors. Experimental investigations demonstrate that the proposed models achieve a good balance between overall risk and local risk, and proposed algorithm can obtain a satisfactory approximate solution within an acceptable time frame.\",\"PeriodicalId\":48872,\"journal\":{\"name\":\"Transportmetrica B-Transport Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportmetrica B-Transport Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21680566.2023.2185498\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportmetrica B-Transport Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21680566.2023.2185498","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
Multi-depot vehicle routing programming for hazmat transportation with weight variation risk
Reasonable transportation risk models are conducive to achieving the green reform of hazardous material logistics industry. However, existing multi-depot vehicle routing programming models for hazardous material transportation may result in overemphasis on either global risk or local risk. To overcome such shortcomings, we develop two novel two-stage programming models that consider weight variety in risk measures. The ordered weighted averaging risk-based model effectively reduces both the global risk and the maximum local risk with respect to the weight distribution in the aggregation process of local risks, and the state variable weight risk-based model helps reduce the global risk and the maximum local risk based on the variable weights associated with local risk values. Furthermore, we design a constraint reduction mechanism and a variable neighbourhood search-based hybrid parallel genetic algorithm to handle the proposed models, such that they could rapidly reach the near-optimal solution using multiplication processors. Experimental investigations demonstrate that the proposed models achieve a good balance between overall risk and local risk, and proposed algorithm can obtain a satisfactory approximate solution within an acceptable time frame.
期刊介绍:
Transportmetrica B is an international journal that aims to bring together contributions of advanced research in understanding and practical experience in handling the dynamic aspects of transport systems and behavior, and hence the sub-title is set as “Transport Dynamics”.
Transport dynamics can be considered from various scales and scopes ranging from dynamics in traffic flow, travel behavior (e.g. learning process), logistics, transport policy, to traffic control. Thus, the journal welcomes research papers that address transport dynamics from a broad perspective, ranging from theoretical studies to empirical analysis of transport systems or behavior based on actual data.
The scope of Transportmetrica B includes, but is not limited to, the following: dynamic traffic assignment, dynamic transit assignment, dynamic activity-based modeling, applications of system dynamics in transport planning, logistics planning and optimization, traffic flow analysis, dynamic programming in transport modeling and optimization, traffic control, land-use and transport dynamics, day-to-day learning process (model and behavioral studies), time-series analysis of transport data and demand, traffic emission modeling, time-dependent transport policy analysis, transportation network reliability and vulnerability, simulation of traffic system and travel behavior, longitudinal analysis of traveler behavior, etc.