{"title":"均匀和多区域声学衬垫的阻抗降低","authors":"Michael G. Jones, D. Nark, B. M. Howerton","doi":"10.1177/1475472X211023855","DOIUrl":null,"url":null,"abstract":"This paper presents results for five uniform and two multizone liners based on data acquired in the NASA Langley Grazing Flow Impedance Tube. Two methods, Prony and CHE, are used to educe the impedance spectra for each of these liners for many test conditions. The Prony method is efficient and generally provides accurate results for uniform liners, but is not well suited for multizone liners. The CHE method supports assessment of both uniform and multizone liners, but is much more computationally expensive. The results from these liners demonstrate the efficacy of both eduction methods, but also clearly demonstrate that sufficient attenuation is required to support accurate impedance eduction. For the liners considered in this study, the data indicate approximately 3 dB attenuation is needed for each zone of a multizone liner in order to ensure quality impedance eduction results. This study was conducted in response to two acoustic liner research challenges in support of a collaboration of multiple national laboratories under the International Forum for Aviation Research.","PeriodicalId":49304,"journal":{"name":"International Journal of Aeroacoustics","volume":"20 1","pages":"458 - 477"},"PeriodicalIF":1.2000,"publicationDate":"2021-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1475472X211023855","citationCount":"1","resultStr":"{\"title\":\"Impedance eduction for uniform and multizone acoustic liners\",\"authors\":\"Michael G. Jones, D. Nark, B. M. Howerton\",\"doi\":\"10.1177/1475472X211023855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents results for five uniform and two multizone liners based on data acquired in the NASA Langley Grazing Flow Impedance Tube. Two methods, Prony and CHE, are used to educe the impedance spectra for each of these liners for many test conditions. The Prony method is efficient and generally provides accurate results for uniform liners, but is not well suited for multizone liners. The CHE method supports assessment of both uniform and multizone liners, but is much more computationally expensive. The results from these liners demonstrate the efficacy of both eduction methods, but also clearly demonstrate that sufficient attenuation is required to support accurate impedance eduction. For the liners considered in this study, the data indicate approximately 3 dB attenuation is needed for each zone of a multizone liner in order to ensure quality impedance eduction results. This study was conducted in response to two acoustic liner research challenges in support of a collaboration of multiple national laboratories under the International Forum for Aviation Research.\",\"PeriodicalId\":49304,\"journal\":{\"name\":\"International Journal of Aeroacoustics\",\"volume\":\"20 1\",\"pages\":\"458 - 477\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2021-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1475472X211023855\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Aeroacoustics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1475472X211023855\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aeroacoustics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1475472X211023855","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ACOUSTICS","Score":null,"Total":0}
Impedance eduction for uniform and multizone acoustic liners
This paper presents results for five uniform and two multizone liners based on data acquired in the NASA Langley Grazing Flow Impedance Tube. Two methods, Prony and CHE, are used to educe the impedance spectra for each of these liners for many test conditions. The Prony method is efficient and generally provides accurate results for uniform liners, but is not well suited for multizone liners. The CHE method supports assessment of both uniform and multizone liners, but is much more computationally expensive. The results from these liners demonstrate the efficacy of both eduction methods, but also clearly demonstrate that sufficient attenuation is required to support accurate impedance eduction. For the liners considered in this study, the data indicate approximately 3 dB attenuation is needed for each zone of a multizone liner in order to ensure quality impedance eduction results. This study was conducted in response to two acoustic liner research challenges in support of a collaboration of multiple national laboratories under the International Forum for Aviation Research.
期刊介绍:
International Journal of Aeroacoustics is a peer-reviewed journal publishing developments in all areas of fundamental and applied aeroacoustics. Fundamental topics include advances in understanding aeroacoustics phenomena; applied topics include all aspects of civil and military aircraft, automobile and high speed train aeroacoustics, and the impact of acoustics on structures. As well as original contributions, state of the art reviews and surveys will be published.
Subtopics include, among others, jet mixing noise; screech tones; broadband shock associated noise and methods for suppression; the near-ground acoustic environment of Short Take-Off and Vertical Landing (STOVL) aircraft; weapons bay aeroacoustics, cavity acoustics, closed-loop feedback control of aeroacoustic phenomena; computational aeroacoustics including high fidelity numerical simulations, and analytical acoustics.