Erdem Gunsur, Hande Mumcu, C. Demir, Nevin Gul Karaguler, M. Karagüler
{"title":"生物诱导矿化处理石屑形成生物材料","authors":"Erdem Gunsur, Hande Mumcu, C. Demir, Nevin Gul Karaguler, M. Karagüler","doi":"10.1680/jbibn.21.00007","DOIUrl":null,"url":null,"abstract":"One of the most widely studied branches of biologically induced mineralization (BIM) processes is called microbially induced calcium carbonate precipitation (MICCP) also known as microbially induced calcite precipitation (MICP) can be used as a method for the reinterpretation of waste natural stone particles into a sustainable material. By overcoming the need for synthetic adhesives or energy consuming firing or sintering procedures for regaining such wastes, a natural and sustainable solution is proposed through certain biological treatment processes. The aim of this study was to determine main processing variables affecting the microbially induced biocement production using waste stone as a scaffold material. Bacillus pasteurii bacteria are used for biological induction of calcite precipitation. A custom-made reactor was designed for controlled incubation and media injection to the waste stone scaffold. Parameters examined were particle size of the waste stones, effect of stone type on cementation, urease activity of the bacterial culture, temperature, pH and flow rate of media, mechanical strength of cemented scaffolds and water absorption capacity. This research demonstrates a potential solution towards the waste generation problem of the global natural stone industry through the treatment of such wastes with biologically induced mineralization for creating a sustainable and biogenic material.","PeriodicalId":48847,"journal":{"name":"Bioinspired Biomimetic and Nanobiomaterials","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogenic material formation by the treatment of stone waste with biologically induced mineralization\",\"authors\":\"Erdem Gunsur, Hande Mumcu, C. Demir, Nevin Gul Karaguler, M. Karagüler\",\"doi\":\"10.1680/jbibn.21.00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the most widely studied branches of biologically induced mineralization (BIM) processes is called microbially induced calcium carbonate precipitation (MICCP) also known as microbially induced calcite precipitation (MICP) can be used as a method for the reinterpretation of waste natural stone particles into a sustainable material. By overcoming the need for synthetic adhesives or energy consuming firing or sintering procedures for regaining such wastes, a natural and sustainable solution is proposed through certain biological treatment processes. The aim of this study was to determine main processing variables affecting the microbially induced biocement production using waste stone as a scaffold material. Bacillus pasteurii bacteria are used for biological induction of calcite precipitation. A custom-made reactor was designed for controlled incubation and media injection to the waste stone scaffold. Parameters examined were particle size of the waste stones, effect of stone type on cementation, urease activity of the bacterial culture, temperature, pH and flow rate of media, mechanical strength of cemented scaffolds and water absorption capacity. This research demonstrates a potential solution towards the waste generation problem of the global natural stone industry through the treatment of such wastes with biologically induced mineralization for creating a sustainable and biogenic material.\",\"PeriodicalId\":48847,\"journal\":{\"name\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspired Biomimetic and Nanobiomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jbibn.21.00007\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspired Biomimetic and Nanobiomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jbibn.21.00007","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biogenic material formation by the treatment of stone waste with biologically induced mineralization
One of the most widely studied branches of biologically induced mineralization (BIM) processes is called microbially induced calcium carbonate precipitation (MICCP) also known as microbially induced calcite precipitation (MICP) can be used as a method for the reinterpretation of waste natural stone particles into a sustainable material. By overcoming the need for synthetic adhesives or energy consuming firing or sintering procedures for regaining such wastes, a natural and sustainable solution is proposed through certain biological treatment processes. The aim of this study was to determine main processing variables affecting the microbially induced biocement production using waste stone as a scaffold material. Bacillus pasteurii bacteria are used for biological induction of calcite precipitation. A custom-made reactor was designed for controlled incubation and media injection to the waste stone scaffold. Parameters examined were particle size of the waste stones, effect of stone type on cementation, urease activity of the bacterial culture, temperature, pH and flow rate of media, mechanical strength of cemented scaffolds and water absorption capacity. This research demonstrates a potential solution towards the waste generation problem of the global natural stone industry through the treatment of such wastes with biologically induced mineralization for creating a sustainable and biogenic material.
期刊介绍:
Bioinspired, biomimetic and nanobiomaterials are emerging as the most promising area of research within the area of biological materials science and engineering. The technological significance of this area is immense for applications as diverse as tissue engineering and drug delivery biosystems to biomimicked sensors and optical devices.
Bioinspired, Biomimetic and Nanobiomaterials provides a unique scholarly forum for discussion and reporting of structure sensitive functional properties of nature inspired materials.