{"title":"考虑运行姿态变化的简化平面艇转向操纵仿真","authors":"K. Sadati, H. Zeraatgar, A. Moghaddas","doi":"10.2478/pomr-2022-0040","DOIUrl":null,"url":null,"abstract":"Abstract The modelling and simulation of planing craft manoeuvres requires coupled six degrees of freedom (6 DOF) motion equations. A coupled 6 DOF motion equation needs hundreds of manoeuvring hydrodynamic coefficients (MHCs) that are mostly determined using the planar motion mechanism (PMM) test. The number of test runs is too high, unless a kind of simplification is imposed to the motion equations. This study modifies 6 DOF motion equations to 4+2 DOF motion equations in which heave and pitch equations are replaced by dynamic draught and trim (so-called running attitude), respectively. The method is applicable for a manoeuvre that commences in the planing regime and ends in the same regime. On that basis, the PMM test is conducted and the model is restrained in the vertical plane at a certain running attitude, determined by a resistance test. The 4+2 DOF method, together with MHCs from the PMM test, are employed for the simulation of turning manoeuvres of a 25° prismatic planing hull. The results of the simulation indicate that the 4+2 DOF method reasonably predicts the path of the craft during the turning manoeuvre and cuts the number of PMM tests required at the same time. The PMM test results show that MHCs are highly related to forward speed and wetted surfaces. The turning manoeuvre simulation shows that the non-linear terms of MHCs cannot be ignored. The STD/L (Steady Turning Diameter divided by Length of the craft) for a planing craft is very large, compared to ships.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"29 1","pages":"12 - 25"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simulation of Turning Manoeuvre of Planing Craft Taking Into Account the Running Attitude Change in a Simplified Manner\",\"authors\":\"K. Sadati, H. Zeraatgar, A. Moghaddas\",\"doi\":\"10.2478/pomr-2022-0040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The modelling and simulation of planing craft manoeuvres requires coupled six degrees of freedom (6 DOF) motion equations. A coupled 6 DOF motion equation needs hundreds of manoeuvring hydrodynamic coefficients (MHCs) that are mostly determined using the planar motion mechanism (PMM) test. The number of test runs is too high, unless a kind of simplification is imposed to the motion equations. This study modifies 6 DOF motion equations to 4+2 DOF motion equations in which heave and pitch equations are replaced by dynamic draught and trim (so-called running attitude), respectively. The method is applicable for a manoeuvre that commences in the planing regime and ends in the same regime. On that basis, the PMM test is conducted and the model is restrained in the vertical plane at a certain running attitude, determined by a resistance test. The 4+2 DOF method, together with MHCs from the PMM test, are employed for the simulation of turning manoeuvres of a 25° prismatic planing hull. The results of the simulation indicate that the 4+2 DOF method reasonably predicts the path of the craft during the turning manoeuvre and cuts the number of PMM tests required at the same time. The PMM test results show that MHCs are highly related to forward speed and wetted surfaces. The turning manoeuvre simulation shows that the non-linear terms of MHCs cannot be ignored. The STD/L (Steady Turning Diameter divided by Length of the craft) for a planing craft is very large, compared to ships.\",\"PeriodicalId\":49681,\"journal\":{\"name\":\"Polish Maritime Research\",\"volume\":\"29 1\",\"pages\":\"12 - 25\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polish Maritime Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2478/pomr-2022-0040\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MARINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2478/pomr-2022-0040","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
Simulation of Turning Manoeuvre of Planing Craft Taking Into Account the Running Attitude Change in a Simplified Manner
Abstract The modelling and simulation of planing craft manoeuvres requires coupled six degrees of freedom (6 DOF) motion equations. A coupled 6 DOF motion equation needs hundreds of manoeuvring hydrodynamic coefficients (MHCs) that are mostly determined using the planar motion mechanism (PMM) test. The number of test runs is too high, unless a kind of simplification is imposed to the motion equations. This study modifies 6 DOF motion equations to 4+2 DOF motion equations in which heave and pitch equations are replaced by dynamic draught and trim (so-called running attitude), respectively. The method is applicable for a manoeuvre that commences in the planing regime and ends in the same regime. On that basis, the PMM test is conducted and the model is restrained in the vertical plane at a certain running attitude, determined by a resistance test. The 4+2 DOF method, together with MHCs from the PMM test, are employed for the simulation of turning manoeuvres of a 25° prismatic planing hull. The results of the simulation indicate that the 4+2 DOF method reasonably predicts the path of the craft during the turning manoeuvre and cuts the number of PMM tests required at the same time. The PMM test results show that MHCs are highly related to forward speed and wetted surfaces. The turning manoeuvre simulation shows that the non-linear terms of MHCs cannot be ignored. The STD/L (Steady Turning Diameter divided by Length of the craft) for a planing craft is very large, compared to ships.
期刊介绍:
The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components.
All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as:
all types of vessels and their equipment,
fixed and floating offshore units and their components,
autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV).
We welcome submissions from these fields in the following technical topics:
ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc.,
structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc.,
marine equipment: ship and offshore unit power plants: overboarding equipment; etc.