C. Ruiz‐González, Juan Pablo Niño‐García, M. Berggren, P. Giorgio
{"title":"沿水文梯度分布的细菌的动力学对比和环境控制","authors":"C. Ruiz‐González, Juan Pablo Niño‐García, M. Berggren, P. Giorgio","doi":"10.4081/AIOL.2017.7232","DOIUrl":null,"url":null,"abstract":"Freshwater bacterioplankton communities are influenced by the transport of bacteria from the surrounding terrestrial environments. It has been shown that, although most of these dispersed bacteria gradually disappear along the hydrologic continuum, some can thrive in aquatic systems and become dominant, leading to a gradual succession of communities. Here we aimed at exploring the environmental factors driving the structure of such contrasting bacterial populations as well as their functional properties. Using Illumina sequencing of the 16S rRNA gene, we characterized the taxonomic composition of bacterioplankton communities from 10 streams and rivers in Quebec spanning the whole hydrologic continuum (river Strahler order 0 to 7), which were sampled in two occasions. With the aim to understand the fate and controls of the transported bacteria, among the taxa present at the origin of the hydrologic gradient ( i.e ., in the smallest headwater streams) we identified two types of dynamics: i) ‘Tourist’ taxa, which were those that decreased in abundance from the headwaters towards the largest rivers, and ii) ‘Seed’ taxa, those that increased their abundances along the hydrologic continuum. Communities changed gradually from the fast-flowing headwater streams dominated by ‘Tourist’ taxa (ca. 95% of the sequences) towards the largest rivers (Strahler order 4-7) where ‘Seed’ taxa comprised up to 80% of community sequences. Variation in taxonomic composition of the communities dominated by ‘Tourist’ taxa in streams seemed related to different degree of terrestrial inputs, whereas compositional changes in ‘Seed’ communities in the large rivers were linked to differences in autochthonous processes. Finally, the two types of communities differed significantly in their metabolic potential assessed through Biolog Ecoplates. All this suggests that hydrologic transport modulates the gradual replacement of two contrasting population types subjected to different environmental controls and with different metabolic potentials. Moreover, we show that the separate exploration of the two pools of taxa allows unveiling environmental drivers and processes operating on them that remain hidden if explored at the whole community level.","PeriodicalId":37306,"journal":{"name":"Advances in Oceanography and Limnology","volume":"8 1","pages":"222-234"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4081/AIOL.2017.7232","citationCount":"13","resultStr":"{\"title\":\"Contrasting dynamics and environmental controls of dispersed bacteria along a hydrologic gradient\",\"authors\":\"C. Ruiz‐González, Juan Pablo Niño‐García, M. Berggren, P. Giorgio\",\"doi\":\"10.4081/AIOL.2017.7232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Freshwater bacterioplankton communities are influenced by the transport of bacteria from the surrounding terrestrial environments. It has been shown that, although most of these dispersed bacteria gradually disappear along the hydrologic continuum, some can thrive in aquatic systems and become dominant, leading to a gradual succession of communities. Here we aimed at exploring the environmental factors driving the structure of such contrasting bacterial populations as well as their functional properties. Using Illumina sequencing of the 16S rRNA gene, we characterized the taxonomic composition of bacterioplankton communities from 10 streams and rivers in Quebec spanning the whole hydrologic continuum (river Strahler order 0 to 7), which were sampled in two occasions. With the aim to understand the fate and controls of the transported bacteria, among the taxa present at the origin of the hydrologic gradient ( i.e ., in the smallest headwater streams) we identified two types of dynamics: i) ‘Tourist’ taxa, which were those that decreased in abundance from the headwaters towards the largest rivers, and ii) ‘Seed’ taxa, those that increased their abundances along the hydrologic continuum. Communities changed gradually from the fast-flowing headwater streams dominated by ‘Tourist’ taxa (ca. 95% of the sequences) towards the largest rivers (Strahler order 4-7) where ‘Seed’ taxa comprised up to 80% of community sequences. Variation in taxonomic composition of the communities dominated by ‘Tourist’ taxa in streams seemed related to different degree of terrestrial inputs, whereas compositional changes in ‘Seed’ communities in the large rivers were linked to differences in autochthonous processes. Finally, the two types of communities differed significantly in their metabolic potential assessed through Biolog Ecoplates. All this suggests that hydrologic transport modulates the gradual replacement of two contrasting population types subjected to different environmental controls and with different metabolic potentials. Moreover, we show that the separate exploration of the two pools of taxa allows unveiling environmental drivers and processes operating on them that remain hidden if explored at the whole community level.\",\"PeriodicalId\":37306,\"journal\":{\"name\":\"Advances in Oceanography and Limnology\",\"volume\":\"8 1\",\"pages\":\"222-234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.4081/AIOL.2017.7232\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Oceanography and Limnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4081/AIOL.2017.7232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Oceanography and Limnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4081/AIOL.2017.7232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
Contrasting dynamics and environmental controls of dispersed bacteria along a hydrologic gradient
Freshwater bacterioplankton communities are influenced by the transport of bacteria from the surrounding terrestrial environments. It has been shown that, although most of these dispersed bacteria gradually disappear along the hydrologic continuum, some can thrive in aquatic systems and become dominant, leading to a gradual succession of communities. Here we aimed at exploring the environmental factors driving the structure of such contrasting bacterial populations as well as their functional properties. Using Illumina sequencing of the 16S rRNA gene, we characterized the taxonomic composition of bacterioplankton communities from 10 streams and rivers in Quebec spanning the whole hydrologic continuum (river Strahler order 0 to 7), which were sampled in two occasions. With the aim to understand the fate and controls of the transported bacteria, among the taxa present at the origin of the hydrologic gradient ( i.e ., in the smallest headwater streams) we identified two types of dynamics: i) ‘Tourist’ taxa, which were those that decreased in abundance from the headwaters towards the largest rivers, and ii) ‘Seed’ taxa, those that increased their abundances along the hydrologic continuum. Communities changed gradually from the fast-flowing headwater streams dominated by ‘Tourist’ taxa (ca. 95% of the sequences) towards the largest rivers (Strahler order 4-7) where ‘Seed’ taxa comprised up to 80% of community sequences. Variation in taxonomic composition of the communities dominated by ‘Tourist’ taxa in streams seemed related to different degree of terrestrial inputs, whereas compositional changes in ‘Seed’ communities in the large rivers were linked to differences in autochthonous processes. Finally, the two types of communities differed significantly in their metabolic potential assessed through Biolog Ecoplates. All this suggests that hydrologic transport modulates the gradual replacement of two contrasting population types subjected to different environmental controls and with different metabolic potentials. Moreover, we show that the separate exploration of the two pools of taxa allows unveiling environmental drivers and processes operating on them that remain hidden if explored at the whole community level.
期刊介绍:
Advances in Oceanography and Limnology was born in 2010 from the 35 years old Proceedings of the national congress of the Italian Association of Oceanology and Limnology. The AIOL Journal was funded as an interdisciplinary journal embracing both fundamental and applied Oceanographic and Limnological research, with focus on both single and multiple disciplines. Currently, two regular issues of the journal are published each year. In addition, Special Issues that focus on topics that are timely and of interest to a significant number of Limnologists and Oceanographers are also published. The journal, which is intended as an official publication of the AIOL, is also published in association with the EFFS (European Federation for Freshwater Sciences), which aims and objectives are directed towards the promotion of freshwater sciences throughout Europe. Starting from the 2015 issue, the AIOL Journal is published as an Open Access, peer-reviewed journal. Space is given to regular articles, review, short notes and opinion paper