{"title":"藻酸钠纳米粒子负载白喉类毒素的制备及性质研究","authors":"Samira Aghamiri, Mojtaba Noofeli, Parvaneh Saffarian, Zahra Salehi Najafabadi, Hamid Reza Goudarzi","doi":"10.1049/nbt2.12088","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to investigate the preparation and characterisation of the alginate nanoparticles (NPs) as antigen delivery system loaded by diphtheria toxoid (DT). For this purpose, both the loading capacity (LC) and Loading efficiency (LE) of the alginate NPs burdened by DT are evaluated. Moreover, the effects of different concentrations of sodium alginate and calcium chloride on the NPs physicochemical characteristics are surveyed in addition to other physical conditions such as homogenization time and rate. To do so, the NPs are characterised using particle size and distribution, zeta potential, scanning electron microscopy, encapsulation efficiency, in vitro release study and FT-IR spectroscopy. Subsequently, the effects of homogenization time and rate on the NPs are assessed. At the meantime, the NPs LC and efficiency in several DT concentrations are estimated. The average size of the NPs was 400.7 and 276.6 nm for unloaded and DT loaded, respectively. According to the obtained results, the zeta potential of the blank and DT loaded NPs are estimated as −23.7 mV and −21.2 mV, respectively. Whereas, the LC and LE were >80% and >90%, in that order. Furthermore, 95% of the releasing DT loaded NPs occurs at 140 h in the sustained mode without any bursting release. It can be concluded that the features of NPs such as morphology and particle size are strongly depended on the calcium chloride, sodium alginate concentrations and physicochemical conditions in the NPs formation process. In addition, appropriate concentrations of the sodium alginate and calcium ions would lead to obtaining the desirable NPs formation associated with the advantageous LE, LC (over 80%) and sustained in vitro release profile. Ultimately, the proposed NPs can be employed in vaccine formulation for the targeted delivery, controlled and slow antigen release associated with the improved antigen stability.</p>","PeriodicalId":13393,"journal":{"name":"IET nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12088","citationCount":"2","resultStr":"{\"title\":\"Investigating preparation and characterisation of diphtheria toxoid-loaded on sodium alginate nanoparticles\",\"authors\":\"Samira Aghamiri, Mojtaba Noofeli, Parvaneh Saffarian, Zahra Salehi Najafabadi, Hamid Reza Goudarzi\",\"doi\":\"10.1049/nbt2.12088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper aims to investigate the preparation and characterisation of the alginate nanoparticles (NPs) as antigen delivery system loaded by diphtheria toxoid (DT). For this purpose, both the loading capacity (LC) and Loading efficiency (LE) of the alginate NPs burdened by DT are evaluated. Moreover, the effects of different concentrations of sodium alginate and calcium chloride on the NPs physicochemical characteristics are surveyed in addition to other physical conditions such as homogenization time and rate. To do so, the NPs are characterised using particle size and distribution, zeta potential, scanning electron microscopy, encapsulation efficiency, in vitro release study and FT-IR spectroscopy. Subsequently, the effects of homogenization time and rate on the NPs are assessed. At the meantime, the NPs LC and efficiency in several DT concentrations are estimated. The average size of the NPs was 400.7 and 276.6 nm for unloaded and DT loaded, respectively. According to the obtained results, the zeta potential of the blank and DT loaded NPs are estimated as −23.7 mV and −21.2 mV, respectively. Whereas, the LC and LE were >80% and >90%, in that order. Furthermore, 95% of the releasing DT loaded NPs occurs at 140 h in the sustained mode without any bursting release. It can be concluded that the features of NPs such as morphology and particle size are strongly depended on the calcium chloride, sodium alginate concentrations and physicochemical conditions in the NPs formation process. In addition, appropriate concentrations of the sodium alginate and calcium ions would lead to obtaining the desirable NPs formation associated with the advantageous LE, LC (over 80%) and sustained in vitro release profile. Ultimately, the proposed NPs can be employed in vaccine formulation for the targeted delivery, controlled and slow antigen release associated with the improved antigen stability.</p>\",\"PeriodicalId\":13393,\"journal\":{\"name\":\"IET nanobiotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/nbt2.12088\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12088\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/nbt2.12088","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Investigating preparation and characterisation of diphtheria toxoid-loaded on sodium alginate nanoparticles
This paper aims to investigate the preparation and characterisation of the alginate nanoparticles (NPs) as antigen delivery system loaded by diphtheria toxoid (DT). For this purpose, both the loading capacity (LC) and Loading efficiency (LE) of the alginate NPs burdened by DT are evaluated. Moreover, the effects of different concentrations of sodium alginate and calcium chloride on the NPs physicochemical characteristics are surveyed in addition to other physical conditions such as homogenization time and rate. To do so, the NPs are characterised using particle size and distribution, zeta potential, scanning electron microscopy, encapsulation efficiency, in vitro release study and FT-IR spectroscopy. Subsequently, the effects of homogenization time and rate on the NPs are assessed. At the meantime, the NPs LC and efficiency in several DT concentrations are estimated. The average size of the NPs was 400.7 and 276.6 nm for unloaded and DT loaded, respectively. According to the obtained results, the zeta potential of the blank and DT loaded NPs are estimated as −23.7 mV and −21.2 mV, respectively. Whereas, the LC and LE were >80% and >90%, in that order. Furthermore, 95% of the releasing DT loaded NPs occurs at 140 h in the sustained mode without any bursting release. It can be concluded that the features of NPs such as morphology and particle size are strongly depended on the calcium chloride, sodium alginate concentrations and physicochemical conditions in the NPs formation process. In addition, appropriate concentrations of the sodium alginate and calcium ions would lead to obtaining the desirable NPs formation associated with the advantageous LE, LC (over 80%) and sustained in vitro release profile. Ultimately, the proposed NPs can be employed in vaccine formulation for the targeted delivery, controlled and slow antigen release associated with the improved antigen stability.
期刊介绍:
Electrical and electronic engineers have a long and illustrious history of contributing new theories and technologies to the biomedical sciences. This includes the cable theory for understanding the transmission of electrical signals in nerve axons and muscle fibres; dielectric techniques that advanced the understanding of cell membrane structures and membrane ion channels; electron and atomic force microscopy for investigating cells at the molecular level.
Other engineering disciplines, along with contributions from the biological, chemical, materials and physical sciences, continue to provide groundbreaking contributions to this subject at the molecular and submolecular level. Our subject now extends from single molecule measurements using scanning probe techniques, through to interactions between cells and microstructures, micro- and nano-fluidics, and aspects of lab-on-chip technologies. The primary aim of IET Nanobiotechnology is to provide a vital resource for academic and industrial researchers operating in this exciting cross-disciplinary activity. We can only achieve this by publishing cutting edge research papers and expert review articles from the international engineering and scientific community. To attract such contributions we will exercise a commitment to our authors by ensuring that their manuscripts receive rapid constructive peer opinions and feedback across interdisciplinary boundaries.
IET Nanobiotechnology covers all aspects of research and emerging technologies including, but not limited to:
Fundamental theories and concepts applied to biomedical-related devices and methods at the micro- and nano-scale (including methods that employ electrokinetic, electrohydrodynamic, and optical trapping techniques)
Micromachining and microfabrication tools and techniques applied to the top-down approach to nanobiotechnology
Nanomachining and nanofabrication tools and techniques directed towards biomedical and biotechnological applications (e.g. applications of atomic force microscopy, scanning probe microscopy and related tools)
Colloid chemistry applied to nanobiotechnology (e.g. cosmetics, suntan lotions, bio-active nanoparticles)
Biosynthesis (also known as green synthesis) of nanoparticles; to be considered for publication, research papers in this area must be directed principally towards biomedical research and especially if they encompass in vivo models or proofs of concept. We welcome papers that are application-orientated or offer new concepts of substantial biomedical importance
Techniques for probing cell physiology, cell adhesion sites and cell-cell communication
Molecular self-assembly, including concepts of supramolecular chemistry, molecular recognition, and DNA nanotechnology
Societal issues such as health and the environment
Special issues. Call for papers:
Smart Nanobiosensors for Next-generation Biomedical Applications - https://digital-library.theiet.org/files/IET_NBT_CFP_SNNBA.pdf
Selected extended papers from the International conference of the 19th Asian BioCeramic Symposium - https://digital-library.theiet.org/files/IET_NBT_CFP_ABS.pdf