对“稀疏充分降维的回顾”的评论

IF 0.7 Q3 STATISTICS & PROBABILITY Statistical Theory and Related Fields Pub Date : 2020-07-02 DOI:10.1080/24754269.2020.1829394
M. Power, Yuexiao Dong
{"title":"对“稀疏充分降维的回顾”的评论","authors":"M. Power, Yuexiao Dong","doi":"10.1080/24754269.2020.1829394","DOIUrl":null,"url":null,"abstract":"We congratulate the authors on a very interesting overview of sparse sufficient dimension reduction (SDR). Sparse SDR methods are discussed in both the classical n>p setting as well as the high-dim...","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"4 1","pages":"149 - 150"},"PeriodicalIF":0.7000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24754269.2020.1829394","citationCount":"0","resultStr":"{\"title\":\"Comment on ‘Review of sparse sufficient dimension reduction’\",\"authors\":\"M. Power, Yuexiao Dong\",\"doi\":\"10.1080/24754269.2020.1829394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We congratulate the authors on a very interesting overview of sparse sufficient dimension reduction (SDR). Sparse SDR methods are discussed in both the classical n>p setting as well as the high-dim...\",\"PeriodicalId\":22070,\"journal\":{\"name\":\"Statistical Theory and Related Fields\",\"volume\":\"4 1\",\"pages\":\"149 - 150\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24754269.2020.1829394\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Theory and Related Fields\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/24754269.2020.1829394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/24754269.2020.1829394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

我们祝贺作者对稀疏充分降维(SDR)进行了非常有趣的概述。本文讨论了稀疏SDR方法在经典n>p设置和高维条件下的应用。。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comment on ‘Review of sparse sufficient dimension reduction’
We congratulate the authors on a very interesting overview of sparse sufficient dimension reduction (SDR). Sparse SDR methods are discussed in both the classical n>p setting as well as the high-dim...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
期刊最新文献
Multiply robust estimation for average treatment effect among treated Communication-efficient distributed statistical inference on zero-inflated Poisson models FragmGAN: generative adversarial nets for fragmentary data imputation and prediction Log-rank and stratified log-rank tests Autoregressive moving average model for matrix time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1