Xu Du, Jingpeng Luo, Qiushi Qin, Jinghong Zhang, Dong Fu
{"title":"改性二氧化钛-氧化石墨烯二元光降解纳米材料:改性、机理和前景","authors":"Xu Du, Jingpeng Luo, Qiushi Qin, Jinghong Zhang, Dong Fu","doi":"10.1007/s10563-021-09349-1","DOIUrl":null,"url":null,"abstract":"<div><p>As a set of photocatalyst and its co-catalyst with exceptional photo-degradation performance, rGO exhibits a conspicuous board-spectrum sensitization effect to TiO<sub>2</sub>. It has been widely recognized by studies in the field of water treatment that, their synergistic can also markedly complement short carrier lifetime and other shortcomings of TiO<sub>2</sub>. Over the years, research conducted on TiO<sub>2</sub>-rGO binary composite material manifests its wide modifiable space for seeking a better degradation performance and a higher solar availability. We presents an overview study on the latest modification methods of the TiO<sub>2</sub>-rGO binary composite material and divide them into categories. This article focuses on the four of them as follows: morphology and crystalline engineering, doping modification, semiconductor ternary combination, noble-metal decoration. Furthermore, the in-depth degradation mechanism and novel structure design of the modified TiO<sub>2</sub>-rGO binary composite materials are reviewed. Ongoing difficulties and promising opportunities have been summarized and expected in this article, aiming to guide the design and study of the future photo-degradation nanomaterial.</p></div>","PeriodicalId":509,"journal":{"name":"Catalysis Surveys from Asia","volume":"26 1","pages":"16 - 34"},"PeriodicalIF":2.1000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10563-021-09349-1.pdf","citationCount":"2","resultStr":"{\"title\":\"Modified TiO2-rGO Binary Photo-Degradation Nanomaterials: Modification, Mechanism, and Perspective\",\"authors\":\"Xu Du, Jingpeng Luo, Qiushi Qin, Jinghong Zhang, Dong Fu\",\"doi\":\"10.1007/s10563-021-09349-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As a set of photocatalyst and its co-catalyst with exceptional photo-degradation performance, rGO exhibits a conspicuous board-spectrum sensitization effect to TiO<sub>2</sub>. It has been widely recognized by studies in the field of water treatment that, their synergistic can also markedly complement short carrier lifetime and other shortcomings of TiO<sub>2</sub>. Over the years, research conducted on TiO<sub>2</sub>-rGO binary composite material manifests its wide modifiable space for seeking a better degradation performance and a higher solar availability. We presents an overview study on the latest modification methods of the TiO<sub>2</sub>-rGO binary composite material and divide them into categories. This article focuses on the four of them as follows: morphology and crystalline engineering, doping modification, semiconductor ternary combination, noble-metal decoration. Furthermore, the in-depth degradation mechanism and novel structure design of the modified TiO<sub>2</sub>-rGO binary composite materials are reviewed. Ongoing difficulties and promising opportunities have been summarized and expected in this article, aiming to guide the design and study of the future photo-degradation nanomaterial.</p></div>\",\"PeriodicalId\":509,\"journal\":{\"name\":\"Catalysis Surveys from Asia\",\"volume\":\"26 1\",\"pages\":\"16 - 34\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10563-021-09349-1.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catalysis Surveys from Asia\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10563-021-09349-1\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catalysis Surveys from Asia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10563-021-09349-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Modified TiO2-rGO Binary Photo-Degradation Nanomaterials: Modification, Mechanism, and Perspective
As a set of photocatalyst and its co-catalyst with exceptional photo-degradation performance, rGO exhibits a conspicuous board-spectrum sensitization effect to TiO2. It has been widely recognized by studies in the field of water treatment that, their synergistic can also markedly complement short carrier lifetime and other shortcomings of TiO2. Over the years, research conducted on TiO2-rGO binary composite material manifests its wide modifiable space for seeking a better degradation performance and a higher solar availability. We presents an overview study on the latest modification methods of the TiO2-rGO binary composite material and divide them into categories. This article focuses on the four of them as follows: morphology and crystalline engineering, doping modification, semiconductor ternary combination, noble-metal decoration. Furthermore, the in-depth degradation mechanism and novel structure design of the modified TiO2-rGO binary composite materials are reviewed. Ongoing difficulties and promising opportunities have been summarized and expected in this article, aiming to guide the design and study of the future photo-degradation nanomaterial.
期刊介绍:
Early dissemination of important findings from Asia which may lead to new concepts in catalyst design is the main aim of this journal. Rapid, invited, short reviews and perspectives from academia and industry will constitute the major part of Catalysis Surveys from Asia . Surveys of recent progress and activities in catalytic science and technology and related areas in Asia will be covered regularly as well. We would appreciate critical comments from colleagues throughout the world about articles in Catalysis Surveys from Asia . If requested and thought appropriate, the comments will be included in the journal. We will be very happy if this journal stimulates global communication between scientists and engineers in the world of catalysis.